PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m282.
Published online 2009 February 18. doi:  10.1107/S1600536809004346
PMCID: PMC2968592

4-(3-Ammonio­prop­yl)morpholin-4-ium tetra­chloridozincate(II)

Abstract

In the title compound, (C7H18N2O)[ZnCl4], the ZnII ion is coordinated by four Cl atoms in a close to tetra­hedral geometry. The crystal packing exhibits C—H(...)Cl, N—H(...)Cl and N—H(...)O hydrogen bonds.

Related literature

For common applications of this material, see: Bringley & Rajeswaran (2006 [triangle]); Tao et al. (2003 [triangle]). For structure cohesion, see: Brammer et al. (2002 [triangle]). For a discussion of Zn—Cl distances and Cl—Zn—Cl bond angles, see: Guo et al. (2007 [triangle]); Valkonen et al. (2006 [triangle]). For computational details, see: Prince (1982 [triangle]); Watkin (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m282-scheme1.jpg

Experimental

Crystal data

  • (C7H18N2O)[ZnCl4]
  • M r = 353.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m282-efi1.jpg
  • a = 6.2765 (2) Å
  • b = 14.3552 (4) Å
  • c = 15.4858 (6) Å
  • β = 100.759 (4)°
  • V = 1370.75 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.55 mm−1
  • T = 293 K
  • 0.17 × 0.09 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur area-detector diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2002 [triangle]) T min = 0.63, T max = 0.82
  • 13120 measured reflections
  • 3304 independent reflections
  • 2815 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.020
  • S = 1.04
  • 2696 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2002 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2002 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: CAMERON (Watkin et al., 1996 [triangle]); software used to prepare material for publication: CRYSTALS.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004346/lx2089sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004346/lx2089Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

supplementary crystallographic information

Comment

Hybrid compounds have many practical and potential applications in various field (Tao et al., 2003; Bringley and Rajeswaran, 2006). In these materials, the crystal packing is ensured by hydrogen bonds and coulombic interactions (Brammer et al., 2002). Here we report the crystal structure of the title compound, 4-(3-ammoniopropyl)morpholin-4-ium tetrachlorozincate (II) (Fig. 1).

As shown in Fig. 1, to ensure charge balance, the organic species is double protonated at N1 and N2 nitrogen atoms. The structure consists essentially of an 4-(3-ammoniopropyl)morpholin-4-ium and [ZnCl4]2- anion which are held together by N—H···Cl and C—H···Cl hydrogen bonds so as to build layers developing parallel to (a, c) planes (Fig. 2). These layers, situated at y = 1/4 and y = 3/4, are themselves interconnected by a set of N2—H···Cl hydrogen bonds (Table 1), alternating with layers, to form a three dimensional infinite network (Fig. 3). The Zn (II) ion is in tetrahedral coordination environment composed of four chloride ions. Each ZnCl42- anion is connected to its neighbors organic cations, which are associated via N—H···O hydrogen bonds, by N—H···Cl and C—H···Cl interactions involving four chlorine atoms (Table 1). The Cl1 and Cl4 are simple acceptors, the Cl3 is double acceptor and the Cl2 is triple acceptor of hydrogen bonds. The (N)—H···Cl distances, varying between 2.42 and 2.54 Å, are smaller than the sum of the Van der Walls radii of the chlorine and hydrogen atoms [r(Cl) + r(H) = 2.81 Å]. Consequently, these values correspond well to strong hydrogen bonds.

However, it is worth noticing that the Zn—Cl bond lengths and Cl—Zn—Cl bond angles in the [ZnCl4]2- anion are not equal to one another but vary with the environment around the Cl atoms(Valkonen et al., 2006). In the title compound, the Zn—Cl bond lengths vary between 2.2486 (4) and 2.2950 (4) Å. The Cl—Zn—Cl bond angles range from 104.32 (1) to 114.43 (2) °. These values indicate that the anionic [ZnCl4]2- tetrahedron is slightly distorted (Guo et al., 2007).

Experimental

ZnCl2, aqueous 1M HCl solution and 3-Morpholinopropylamine in a 1:2:1 molar ratio were mixed and dissolved in sufficient ethanol. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in ethanol at room temperature after a few days.

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 and O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 40% probability level.
Fig. 2.
Crystal structure of (I) viewed along b axis showing the layered organization.
Fig. 3.
The packing of (I) viewed down the a axis showing layers at y = 1/4 and y = 3/4.

Crystal data

(C7H18N2O)[ZnCl4]F(000) = 720
Mr = 353.42Dx = 1.712 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 7336 reflections
a = 6.2765 (2) Åθ = 2.8–29.2°
b = 14.3552 (4) ŵ = 2.55 mm1
c = 15.4858 (6) ÅT = 293 K
β = 100.759 (4)°Block, colorless
V = 1370.75 (8) Å30.17 × 0.09 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction XCALIBUR area-detector diffractometer3304 independent reflections
Radiation source: Enhance (Mo) X-ray Source2815 reflections with I > 2σ(I)
graphiteRint = 0.021
Detector resolution: 15.9897 pixels mm-1θmax = 29.3°, θmin = 2.8°
[var phi] and ω scansh = −8→8
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2002)k = −18→18
Tmin = 0.63, Tmax = 0.82l = −18→20
13120 measured reflections

Refinement

Refinement on FHydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 8.69 -6.08 5.75
wR(F2) = 0.020(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.27 e Å3
2696 reflectionsΔρmin = −0.19 e Å3
137 parametersExtinction correction: Larson (1970), Equation 22
0 restraintsExtinction coefficient: 64 (4)
Primary atom site location: structure-invariant direct methods

Special details

Refinement. Data with I<3σ(I) were excluded from the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.37044 (3)0.371470 (11)0.756164 (11)0.0273
Cl10.48665 (7)0.47971 (3)0.85946 (3)0.0402
Cl20.00747 (6)0.35230 (3)0.74949 (3)0.0367
Cl30.51658 (6)0.22854 (2)0.79921 (3)0.0372
Cl40.43433 (6)0.42069 (3)0.62551 (2)0.0402
C10.2040 (3)0.73398 (12)0.47182 (11)0.0383
C20.2358 (3)0.83554 (14)0.45739 (12)0.0468
C3−0.0795 (3)0.87396 (11)0.50847 (11)0.0441
C4−0.1308 (2)0.77313 (10)0.52356 (10)0.0319
C50.0385 (3)0.61461 (10)0.54896 (10)0.0319
C6−0.1030 (2)0.58498 (10)0.61278 (9)0.0310
C7−0.0059 (2)0.60272 (10)0.70780 (9)0.0284
O0.0323 (2)0.88265 (8)0.43720 (8)0.0456
N10.07386 (18)0.71776 (8)0.54268 (7)0.0256
N2−0.1501 (2)0.56344 (9)0.76395 (8)0.0355
H10.15130.73710.59240.0370*
H2−0.09770.57580.81910.0530*
H3−0.16100.50370.75690.0543*
H4−0.27860.58810.75080.0540*
H50.33910.70340.49020.0478*
H60.12540.70590.41900.0461*
H70.32470.86250.50900.0563*
H80.30800.84100.40800.0566*
H90.00950.90010.56120.0534*
H10−0.21540.90710.49380.0536*
H11−0.20370.76730.57270.0386*
H12−0.21850.74680.47140.0373*
H130.18200.58790.56380.0378*
H14−0.03050.59630.48960.0376*
H15−0.12240.51880.60590.0375*
H16−0.24280.61610.59820.0365*
H170.13340.57400.72400.0348*
H180.00680.66790.71930.0354*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.02689 (9)0.02429 (9)0.02946 (9)−0.00028 (6)0.00203 (6)0.00055 (6)
Cl10.0496 (2)0.03524 (19)0.03582 (19)−0.00756 (15)0.00812 (16)−0.00963 (14)
Cl20.02569 (16)0.03157 (17)0.0513 (2)−0.00010 (12)0.00342 (14)0.00177 (15)
Cl30.02699 (16)0.02632 (16)0.0545 (2)0.00182 (12)−0.00201 (15)0.00397 (15)
Cl40.0402 (2)0.0493 (2)0.03073 (18)−0.00006 (16)0.00604 (15)0.00497 (15)
C10.0350 (8)0.0496 (9)0.0336 (8)0.0016 (7)0.0147 (6)0.0046 (7)
C20.0456 (9)0.0538 (10)0.0415 (9)−0.0109 (8)0.0096 (7)0.0126 (8)
C30.0648 (11)0.0334 (8)0.0370 (8)0.0071 (7)0.0177 (8)0.0041 (6)
C40.0333 (7)0.0331 (7)0.0306 (7)0.0031 (6)0.0093 (6)0.0007 (5)
C50.0405 (8)0.0261 (7)0.0297 (7)0.0009 (5)0.0084 (6)−0.0024 (5)
C60.0367 (7)0.0256 (7)0.0300 (7)−0.0060 (5)0.0047 (6)−0.0010 (5)
C70.0318 (7)0.0238 (6)0.0293 (7)−0.0020 (5)0.0052 (5)0.0007 (5)
O0.0610 (8)0.0437 (7)0.0337 (6)0.0007 (5)0.0133 (5)0.0131 (5)
N10.0283 (6)0.0286 (6)0.0192 (5)−0.0033 (4)0.0027 (4)−0.0002 (4)
N20.0441 (7)0.0331 (6)0.0310 (6)−0.0010 (5)0.0119 (5)0.0018 (5)

Geometric parameters (Å, °)

Zn1—Cl12.2515 (4)C5—H130.966
Zn1—Cl22.2779 (4)C5—H140.976
Zn1—Cl32.2950 (4)C6—C71.5056 (19)
Zn1—Cl42.2486 (4)C6—H160.973
O—C21.427 (2)C6—H150.961
O—C31.419 (2)C7—N21.4790 (18)
C2—C11.494 (2)C7—H180.954
C2—H70.966C7—H170.957
C2—H80.962N2—H20.875
C1—N11.5036 (18)N2—H30.866
C1—H50.950N2—H40.869
C1—H60.961C4—C31.510 (2)
N1—C51.5032 (17)C4—H110.963
N1—C41.4922 (18)C4—H120.965
N1—H10.875C3—H90.974
C5—C61.508 (2)C3—H100.966
Cl1—Zn1—Cl2107.710 (16)C5—C6—C7114.36 (12)
Cl1—Zn1—Cl3110.593 (17)C5—C6—H16109.5
Cl2—Zn1—Cl3104.316 (14)C7—C6—H16109.4
Cl1—Zn1—Cl4109.501 (17)C5—C6—H15106.5
Cl2—Zn1—Cl4109.997 (17)C7—C6—H15107.2
Cl3—Zn1—Cl4114.428 (17)H16—C6—H15109.8
C2—O—C3109.87 (13)C6—C7—N2109.25 (12)
O—C2—C1110.87 (14)C6—C7—H18110.7
O—C2—H7110.3N2—C7—H18107.7
C1—C2—H7109.9C6—C7—H17111.5
O—C2—H8108.8N2—C7—H17108.1
C1—C2—H8107.1H18—C7—H17109.5
H7—C2—H8109.9C7—N2—H2109.7
C2—C1—N1111.48 (13)C7—N2—H3110.2
C2—C1—H5111.0H2—N2—H3109.4
N1—C1—H5106.6C7—N2—H4110.5
C2—C1—H6110.1H2—N2—H4108.0
N1—C1—H6107.0H3—N2—H4109.0
H5—C1—H6110.5N1—C4—C3109.92 (13)
C1—N1—C5107.86 (11)N1—C4—H11108.4
C1—N1—C4109.72 (11)C3—C4—H11110.6
C5—N1—C4113.91 (11)N1—C4—H12107.1
C1—N1—H1107.7C3—C4—H12110.5
C5—N1—H1108.7H11—C4—H12110.3
C4—N1—H1108.8C4—C3—O110.79 (13)
N1—C5—C6115.63 (11)C4—C3—H9110.1
N1—C5—H13105.3O—C3—H9109.2
C6—C5—H13111.7C4—C3—H10107.7
N1—C5—H14104.5O—C3—H10108.4
C6—C5—H14109.2H9—C3—H10110.5
H13—C5—H14110.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···Oi0.871.952.821 (2)173
N2—H3···Cl20.872.433.209 (2)150
C1—H6···Cl2ii0.962.723.653 (2)164
C7—H18···Cl2iii0.952.703.644 (2)173
C5—H14···Cl4ii0.982.823.657 (2)144
N2—H4···Cl3iii0.872.543.320 (2)149
N1—H1···Cl3iv0.882.423.206 (2)149
C2—H7···Cl1iv0.972.743.677 (2)165

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, −y+1, −z+1; (iii) −x, y+1/2, −z+3/2; (iv) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2089).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Brammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956–4961. [PubMed]
  • Bringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304–m1305.
  • Guo, N., Yi, J., Chen, Y., Liao, S. & Fu, Z. (2007). Acta Cryst. E63, m2571.
  • Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED Oxford Diffraction Poland, Wrocław, Poland.
  • Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science New York: Springer-Verlag.
  • Tao, J., Yin, X., Jiang, Y. B., Yang, L. F., Huang, R. B. & Zheng, L. S. (2003). Eur. J. Inorg. Chem. pp. 2678–2682.
  • Valkonen, A., Ahonen, K. & Kolehmainen, E. (2006). Acta Cryst. C62, m290–m292. [PubMed]
  • Watkin, D. (1994). Acta Cryst. A50, 411–437.
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography