PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m288.
Published online 2009 February 18. doi:  10.1107/S1600536809005121
PMCID: PMC2968591

Poly[[[diisothio­cyanato­cobalt(II)]-bis­[μ-4-tert-butyl-2,6-bis­(1,2,4-triazol-1-ylmeth­yl)phenol]] dimethyl­formamide disolvate dihydrate]

Abstract

In the title compound, {[Co(NCS)2(C16H20N6O)2]·2C3H7NO·2H2O}n, each CoII ion located on an inversion center is six-coordinated by four equatorial N atoms from four different 4-tert-butyl-2,6-bis­(1,2,4-triazol-1-ylmeth­yl)phenol (L) ligands, and by two N atoms from two axial thio­cyanate anions [Co—N = 2.104 (3)–2.144 (3) Å]. The metal centres are connected via the bidentate L ligands into two-dimensional polymeric layers parallel to bc plane. The dimethyl­formamide and solvent water mol­ecules participate in inter­molecular O—H(...)O and O—H(...)S hydrogen bonds, which consolidate the crystal packing.

Related literature

For related structures, see: Chu et al. (2007 [triangle], 2008 [triangle]); Ma et al. (2003 [triangle]); Zhu et al. (2004 [triangle], 2007 [triangle]). For details of the synthesis, see Yan et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m288-scheme1.jpg

Experimental

Crystal data

  • [Co(NCS)2(C16H20N6O)2]·2C3H7NO·2H2O
  • M r = 982.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m288-efi5.jpg
  • a = 12.561 (4) Å
  • b = 20.660 (6) Å
  • c = 10.571 (3) Å
  • β = 112.992 (5)°
  • V = 2525.2 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.48 mm−1
  • T = 291 K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.869, T max = 0.910
  • 13505 measured reflections
  • 4950 independent reflections
  • 2902 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.123
  • S = 0.90
  • 4950 reflections
  • 301 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005121/cv2519sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005121/cv2519Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges Anhui University of Technology for supporting this work.

supplementary crystallographic information

Comment

Ligand 2,6-bis(1,2,4-triazol-1-ylmethyl)-4-tert-butyl-phenol (bttp) has been used to generate various metal-organic architectures with different transitional metal ions due to its polydentate character and bridging ability (Chu et al., 2007, 2008; Ma et al., 2003; Zhu et al., 2004, 2007). As a further study of such complexes, the title CoII complex is reported in this paper.

Each CoII atom exhibits a slightly distorted octahedral environment with four nitrogen atoms from the triazole groups of four bttp ligands in the equatorial plane, and two nitrogen atoms from two thiocyanate ligands at the axial positions (Fig. 1). Each ligand adopts a cis conformation in which two triazole groups are on the same direction of the central phenyl ring. The dihedral angles between the phenyl ring and the two triazole rings are 97.8 (3) ° and 88.8 (3) °, respectively. The two triazole rings are inclined to one another, with a dihedral angle of 65.3 (3) °. Each bttp serves as a bidentate bridging ligand via two exodentate nitrogen atoms at the 4-position of the triazole rings while the nitrogen atoms at 1,2-positions remain uncoordinated. In this way four metal atoms and four bttp ligands form a 48-membered [M4L4] metallocyclic ring, which is further assembled into a two-dimensional network via Co–N coordination bonds (Fig. 2). The Co···Co distance linked by the bridged bttp ligand is 11.604 (1) Å. The water oxygen atom is uncoordinated, and contributes to the formation of O–H···O and O–H···S hydrogen-bonding interactions with phenol group and DMF molecule (Table 1).

Experimental

All solvents and chemicals were of analytical grade and were used without further purification. Ligand bttp was prepared via a one-step Mannich reaction as a white powder in 57% yield (Yan et al., 1994). For the synthesis of title compoud, a solution of bttp (0.1 mmol), Co(NO3)2.6H2O (0.1 mmol) and NH4SCN (0.25 mmol) in 30 ml e thanol was refluxed for 2 h, and then cooled to room temperature and filtered. The collected solid was dissolved in 1 ml DMF, and 20 ml e thanol was added to this solution. The mixture was left to stand at room temperature for two weeks and pink crystalline products were obtained (30.5 mg, 62%). Anal. Calcd. for C40H58CoN16O6S2: C, 48.92; H, 5.95; N, 22.82. Found: C, 48.88; H, 5.98; N, 22.72.

Refinement

All H atoms were geometrically positioned (C–H 0.93–0.97 Å, O–H 0.82–0.85 Å), and refined as riding, with Uiso(H)=1.2-1.5 Ueq of the parent atom.

Figures

Fig. 1.
A portion of the crystal structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering [symmetry codes: (A) -x + 1, -y + 1, -z + 1; (B) -x + 1, y - 1/2, -z + 3/2; (C) x, -y + 3/2, z - 1/2].

Crystal data

[Co(NCS)2(C16H20N6O)2]·2C3H7NO·2H2OF(000) = 1034
Mr = 982.07Dx = 1.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2950 reflections
a = 12.561 (4) Åθ = 2.2–26.3°
b = 20.660 (6) ŵ = 0.48 mm1
c = 10.571 (3) ÅT = 291 K
β = 112.992 (5)°Block, pink
V = 2525.2 (12) Å30.30 × 0.30 × 0.20 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer4950 independent reflections
Radiation source: fine-focus sealed tube2902 reflections with I > 2σ(I)
graphiteRint = 0.057
[var phi] and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −15→9
Tmin = 0.869, Tmax = 0.910k = −22→25
13505 measured reflectionsl = −12→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 0.90w = 1/[σ2(Fo2) + (0.0486P)2] where P = (Fo2 + 2Fc2)/3
4950 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50000.50000.50000.03695 (19)
C10.5771 (3)0.86800 (14)0.5064 (3)0.0393 (8)
C20.6792 (3)0.90337 (13)0.5400 (3)0.0404 (8)
C30.7690 (3)0.87839 (14)0.5126 (3)0.0433 (8)
H30.83600.90290.53460.052*
C40.7636 (3)0.81724 (14)0.4528 (3)0.0420 (8)
C50.6623 (3)0.78350 (14)0.4230 (3)0.0404 (8)
H50.65630.74260.38410.048*
C60.5691 (3)0.80680 (13)0.4473 (3)0.0371 (8)
C70.8633 (3)0.79381 (16)0.4164 (4)0.0550 (10)
C80.9756 (3)0.7951 (2)0.5444 (5)0.0955 (15)
H8A1.03790.77960.52160.143*
H8B0.96780.76780.61380.143*
H8C0.99160.83860.57830.143*
C90.8743 (5)0.8385 (2)0.3075 (5)0.1115 (19)
H9A0.80330.83810.22750.167*
H9B0.93630.82390.28320.167*
H9C0.89020.88180.34320.167*
C100.8440 (4)0.72489 (18)0.3605 (5)0.0915 (15)
H10A0.77290.72290.28060.137*
H10B0.83970.69600.42950.137*
H10C0.90700.71230.33600.137*
C110.6889 (3)0.97044 (14)0.6015 (3)0.0478 (9)
H11A0.76300.98890.61250.057*
H11B0.62900.99770.53790.057*
C120.5946 (3)0.99424 (14)0.7654 (3)0.0455 (8)
H120.52961.01510.70340.055*
C130.7154 (3)0.95306 (17)0.9391 (4)0.0597 (10)
H130.75260.93911.02940.072*
C140.4596 (3)0.76755 (13)0.4002 (3)0.0447 (9)
H14A0.40070.79130.41890.054*
H14B0.43180.76070.30180.054*
C150.4614 (3)0.64600 (13)0.4173 (3)0.0421 (8)
H150.43190.63660.32390.050*
C160.5281 (3)0.63924 (14)0.6298 (3)0.0507 (9)
H160.55570.62170.71780.061*
C170.2724 (3)0.51848 (14)0.2245 (4)0.0446 (9)
C180.1450 (9)0.6297 (5)0.6463 (9)0.298 (8)
H18A0.21270.60630.70340.448*
H18B0.07740.60900.64860.448*
H18C0.14930.67330.67950.448*
C190.0711 (6)0.5834 (3)0.4258 (8)0.178 (3)
H19A−0.00690.58660.42000.267*
H19B0.10150.54140.45970.267*
H19C0.07200.58970.33620.267*
C200.1849 (6)0.6730 (4)0.4695 (12)0.223 (6)
H200.17320.66850.37750.267*
N10.6785 (2)0.97134 (11)0.7339 (3)0.0424 (7)
N20.7593 (3)0.94366 (14)0.8470 (3)0.0633 (9)
N30.6134 (2)0.98416 (11)0.8952 (3)0.0421 (7)
N40.4785 (2)0.70493 (10)0.4699 (2)0.0381 (7)
N50.5213 (3)0.70182 (11)0.6081 (3)0.0537 (8)
N60.4925 (2)0.60231 (11)0.5167 (3)0.0419 (7)
N70.3582 (3)0.50307 (12)0.3096 (3)0.0498 (7)
N80.1387 (4)0.6307 (2)0.5147 (7)0.1162 (19)
O10.4893 (2)0.89753 (10)0.5304 (3)0.0546 (6)
H10.43900.87090.52370.082*
O20.3105 (2)0.83963 (13)0.5642 (3)0.1002 (11)
H2A0.28850.80040.55130.120*
H2B0.25590.86310.56680.150*
O30.2404 (4)0.7173 (2)0.5249 (8)0.239 (4)
S10.14960 (9)0.54051 (5)0.10273 (12)0.0765 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0484 (4)0.0262 (3)0.0367 (4)−0.0040 (3)0.0171 (3)0.0003 (3)
C10.051 (2)0.0312 (17)0.0407 (19)0.0049 (16)0.0238 (17)0.0051 (14)
C20.055 (2)0.0296 (16)0.043 (2)−0.0029 (16)0.0258 (18)−0.0028 (14)
C30.049 (2)0.0362 (17)0.049 (2)−0.0073 (16)0.0249 (18)−0.0029 (15)
C40.056 (2)0.0307 (17)0.044 (2)0.0001 (16)0.0247 (18)0.0025 (14)
C50.055 (2)0.0258 (16)0.041 (2)0.0040 (16)0.0191 (17)−0.0010 (14)
C60.049 (2)0.0241 (15)0.0377 (18)0.0004 (15)0.0166 (16)0.0046 (13)
C70.064 (3)0.042 (2)0.073 (3)0.0009 (18)0.041 (2)−0.0084 (18)
C80.066 (3)0.093 (3)0.134 (4)0.004 (3)0.046 (3)−0.024 (3)
C90.165 (5)0.082 (3)0.156 (5)0.028 (3)0.137 (4)0.023 (3)
C100.092 (3)0.060 (3)0.146 (4)0.000 (2)0.072 (3)−0.033 (3)
C110.062 (2)0.0335 (17)0.060 (2)−0.0091 (17)0.037 (2)−0.0046 (16)
C120.054 (2)0.0373 (18)0.048 (2)0.0070 (17)0.0233 (18)−0.0025 (16)
C130.061 (3)0.071 (3)0.045 (2)0.012 (2)0.019 (2)0.0028 (19)
C140.053 (2)0.0302 (17)0.047 (2)0.0053 (15)0.0148 (18)0.0054 (14)
C150.054 (2)0.0330 (17)0.0365 (19)−0.0066 (16)0.0143 (17)−0.0067 (14)
C160.081 (3)0.0337 (18)0.039 (2)−0.0038 (18)0.0247 (19)0.0002 (15)
C170.057 (2)0.0317 (18)0.050 (2)−0.0062 (16)0.027 (2)−0.0054 (15)
C180.396 (17)0.376 (16)0.121 (7)0.258 (14)0.099 (9)0.043 (8)
C190.159 (7)0.117 (5)0.234 (9)0.029 (5)0.051 (7)0.011 (6)
C200.093 (6)0.113 (6)0.475 (19)0.010 (5)0.125 (9)0.039 (9)
N10.0509 (19)0.0322 (14)0.0500 (18)−0.0032 (13)0.0263 (16)−0.0068 (13)
N20.058 (2)0.075 (2)0.059 (2)0.0159 (17)0.0251 (18)−0.0012 (17)
N30.0483 (18)0.0381 (15)0.0432 (18)0.0033 (13)0.0215 (14)−0.0014 (12)
N40.0478 (18)0.0279 (13)0.0381 (17)−0.0048 (12)0.0163 (14)−0.0010 (11)
N50.089 (2)0.0319 (15)0.0385 (17)−0.0037 (15)0.0229 (16)−0.0047 (12)
N60.0578 (18)0.0286 (13)0.0404 (16)−0.0038 (13)0.0202 (14)0.0003 (12)
N70.056 (2)0.0466 (16)0.0410 (17)−0.0040 (16)0.0127 (15)0.0024 (14)
N80.065 (3)0.065 (3)0.192 (6)0.003 (2)0.022 (3)−0.008 (3)
O10.0581 (16)0.0363 (12)0.0824 (18)−0.0020 (12)0.0416 (15)−0.0086 (12)
O20.087 (2)0.082 (2)0.157 (3)−0.0222 (17)0.075 (2)−0.0334 (19)
O30.106 (4)0.096 (3)0.512 (10)−0.033 (3)0.118 (5)−0.063 (5)
S10.0555 (7)0.0812 (7)0.0776 (8)0.0190 (6)0.0094 (6)−0.0002 (6)

Geometric parameters (Å, °)

Co1—N7i2.104 (3)C12—N31.314 (4)
Co1—N72.104 (3)C12—H120.9300
Co1—N62.126 (2)C13—N21.306 (4)
Co1—N6i2.126 (2)C13—N31.344 (4)
Co1—N3ii2.144 (3)C13—H130.9300
Co1—N3iii2.144 (3)C14—N41.461 (3)
C1—O11.368 (4)C14—H14A0.9700
C1—C21.396 (4)C14—H14B0.9700
C1—C61.397 (4)C15—N41.321 (3)
C2—C31.370 (4)C15—N61.323 (4)
C2—C111.515 (4)C15—H150.9300
C3—C41.403 (4)C16—N51.310 (3)
C3—H30.9300C16—N61.339 (4)
C4—C51.375 (4)C16—H160.9300
C4—C71.526 (5)C17—N71.147 (4)
C5—C61.380 (4)C17—S11.641 (4)
C5—H50.9300C18—N81.361 (8)
C6—C141.504 (4)C18—H18A0.9600
C7—C91.523 (5)C18—H18B0.9600
C7—C101.525 (5)C18—H18C0.9600
C7—C81.526 (5)C19—N81.391 (7)
C8—H8A0.9600C19—H19A0.9600
C8—H8B0.9600C19—H19B0.9600
C8—H8C0.9600C19—H19C0.9600
C9—H9A0.9600C20—O31.161 (9)
C9—H9B0.9600C20—N81.243 (8)
C9—H9C0.9600C20—H200.9300
C10—H10A0.9600N1—N21.356 (4)
C10—H10B0.9600N3—Co1iv2.144 (3)
C10—H10C0.9600N4—N51.347 (3)
C11—N11.456 (4)O1—H10.8200
C11—H11A0.9700O2—H2A0.8500
C11—H11B0.9700O2—H2B0.8501
C12—N11.311 (4)
N7i—Co1—N7180.0C2—C11—H11A108.8
N7i—Co1—N689.94 (10)N1—C11—H11B108.8
N7—Co1—N690.06 (10)C2—C11—H11B108.8
N7i—Co1—N6i90.06 (10)H11A—C11—H11B107.7
N7—Co1—N6i89.94 (10)N1—C12—N3111.9 (3)
N6—Co1—N6i180.000 (1)N1—C12—H12124.0
N7i—Co1—N3ii89.21 (11)N3—C12—H12124.0
N7—Co1—N3ii90.79 (11)N2—C13—N3115.9 (3)
N6—Co1—N3ii92.79 (9)N2—C13—H13122.0
N6i—Co1—N3ii87.21 (9)N3—C13—H13122.0
N7i—Co1—N3iii90.79 (11)N4—C14—C6111.3 (2)
N7—Co1—N3iii89.21 (11)N4—C14—H14A109.4
N6—Co1—N3iii87.21 (9)C6—C14—H14A109.4
N6i—Co1—N3iii92.79 (9)N4—C14—H14B109.4
N3ii—Co1—N3iii180.0C6—C14—H14B109.4
O1—C1—C2116.5 (3)H14A—C14—H14B108.0
O1—C1—C6124.4 (3)N4—C15—N6110.2 (3)
C2—C1—C6119.1 (3)N4—C15—H15124.9
C3—C2—C1120.0 (3)N6—C15—H15124.9
C3—C2—C11120.0 (3)N5—C16—N6115.4 (3)
C1—C2—C11120.0 (3)N5—C16—H16122.3
C2—C3—C4122.4 (3)N6—C16—H16122.3
C2—C3—H3118.8N7—C17—S1180.0 (4)
C4—C3—H3118.8N8—C18—H18A109.5
C5—C4—C3116.0 (3)N8—C18—H18B109.5
C5—C4—C7124.0 (3)H18A—C18—H18B109.5
C3—C4—C7119.9 (3)N8—C18—H18C109.5
C4—C5—C6123.8 (3)H18A—C18—H18C109.5
C4—C5—H5118.1H18B—C18—H18C109.5
C6—C5—H5118.1N8—C19—H19A109.5
C5—C6—C1118.8 (3)N8—C19—H19B109.5
C5—C6—C14118.9 (3)H19A—C19—H19B109.5
C1—C6—C14122.2 (3)N8—C19—H19C109.5
C9—C7—C10108.7 (3)H19A—C19—H19C109.5
C9—C7—C4108.9 (3)H19B—C19—H19C109.5
C10—C7—C4111.8 (3)O3—C20—N8129.7 (12)
C9—C7—C8109.6 (4)O3—C20—H20115.1
C10—C7—C8108.2 (3)N8—C20—H20115.1
C4—C7—C8109.7 (3)C12—N1—N2109.1 (3)
C7—C8—H8A109.5C12—N1—C11129.2 (3)
C7—C8—H8B109.5N2—N1—C11121.7 (3)
H8A—C8—H8B109.5C13—N2—N1101.9 (3)
C7—C8—H8C109.5C12—N3—C13101.2 (3)
H8A—C8—H8C109.5C12—N3—Co1iv129.1 (2)
H8B—C8—H8C109.5C13—N3—Co1iv129.2 (2)
C7—C9—H9A109.5C15—N4—N5110.1 (2)
C7—C9—H9B109.5C15—N4—C14129.5 (3)
H9A—C9—H9B109.5N5—N4—C14120.4 (2)
C7—C9—H9C109.5C16—N5—N4102.0 (2)
H9A—C9—H9C109.5C15—N6—C16102.3 (2)
H9B—C9—H9C109.5C15—N6—Co1128.4 (2)
C7—C10—H10A109.5C16—N6—Co1129.1 (2)
C7—C10—H10B109.5C17—N7—Co1160.7 (3)
H10A—C10—H10B109.5C20—N8—C18123.5 (8)
C7—C10—H10C109.5C20—N8—C19119.1 (9)
H10A—C10—H10C109.5C18—N8—C19117.2 (8)
H10B—C10—H10C109.5C1—O1—H1109.5
N1—C11—C2113.7 (3)H2A—O2—H2B109.5
N1—C11—H11A108.8

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y−1/2, −z+3/2; (iii) x, −y+3/2, z−1/2; (iv) −x+1, y+1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.942.689 (4)152
O2—H2A···O30.851.812.655 (5)179
O2—H2B···S1v0.852.513.321 (3)161

Symmetry codes: (v) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2519).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chu, Z.-L., Huang, W., Zhu, H.-B. & Gou, S.-H. (2008). J. Mol. Struct.874, 1–13.
  • Chu, Z.-L., Xu, G., Huang, W. & Gou, S.-H. (2007). Acta Cryst. E63, m2155–m2156.
  • Ma, Y.-L., Huang, W., Yao, J.-C., Li, B., Gou, S.-H. & Fun, H.-K. (2003). J. Mol. Struct.658, 51–58.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yan, J.-M., Zhang, Z.-J., Yuan, D.-Q., Xie, R.-G. & Zhao, H.-M. (1994). Synth. Commun.24, 47–52.
  • Zhu, H.-B., Chu, Z.-L., Hu, D.-H., Huang, W. & Gou, S.-H. (2007). Inorg. Chem. Commun.10, 362–366.
  • Zhu, H.-B., Huang, C.-H., Huang, W. & Gou, S.-H. (2004). Inorg. Chem. Commun.7, 1095–1099.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography