PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o544.
Published online 2009 February 18. doi:  10.1107/S1600536809005108
PMCID: PMC2968585

4-Ethyl­phenol

Abstract

The title compound, C8H10O, crystallizes with three mol­ecules in the asymmetric unit. O—H(...)O hydrogen bonds form cooperative chains connecting the mol­ecules along [100]. On the unitary graph level, this pattern is assigned a DDD descriptor. The ternary descriptor is C 3 3(6).

Related literature

For the crystal structure of a co-crystallizate of the title compound and a copper complex, see: Butcher et al. (1995 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]); Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o544-scheme1.jpg

Experimental

Crystal data

  • C8H10O
  • M r = 122.16
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o544-efi4.jpg
  • a = 5.9318 (19) Å
  • b = 16.514 (3) Å
  • c = 22.574 (9) Å
  • V = 2211.2 (12) Å3
  • Z = 12
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 200 K
  • 0.47 × 0.32 × 0.18 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005 [triangle]) T min = 0.977, T max = 0.987
  • 9193 measured reflections
  • 2594 independent reflections
  • 1457 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.085
  • S = 0.91
  • 2594 reflections
  • 250 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005108/jh2071sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005108/jh2071Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Klapötke for generous allocation of measurement time on the diffractometer.

supplementary crystallographic information

Comment

In a program focused on the influence of bonding to pentavalent central atoms on the geometry of aromatic alcohols, the crystal structure of para-ethylphenol was determined.

There are three molecules in the asymmetric unit which do not show non-crystallographic symmetry (Fig. 1 and Fig. 2). The hydrogen atoms on the hydroxy groups reside in the planes of the respective aromatic moiety whereas the alkyl chains are oriented approximately perpendicular to them. The least-squares planes defined by the aromatic moieties and the atoms of the hydroxy group and their respective aromatic carrier atom enclose angles roughly between 1° and 16°. The least-squares planes defined by the aromatic moieties and the C atoms of the alkyl chain and their respective aromatic carrier atom intersect at angles roughly between 77° and 80°.

The hyxdroxy groups furnish the formation of cooperative chains of hydrogen bonds along [1 0 0] (Fig. 3). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), this pattern can be ascribed a DDD descriptor on the unitary level. The ternary descriptor of these chains is C33(6). The molecules are packed in a pseudo-trigonal mode with the hydrophilic part of the molecules residing in the center of these entities (Fig. 4).

The molecular packing of the title compound is shown in Figure 5.

Experimental

The compound was obtained commercially (Aldrich) and used for diffraction studies as received.

Refinement

Due to the absence of a strong anomalous scatterer in the molecule the absolute structure parameter, which is 0.7948 with an estimated standard deviation of 1.2829 for the unmerged data set, is meaningless. Thus, Friedel opposites (1849 pairs) have been merged and the absolute configuration has been arbitrarily chosen. The absolute structure parameter has been removed from the cif.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å for aromatic C atoms, C—H 0.99 Å for methylene groups, C—H 0.98 Å for methyl groups and O—H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C) for aromatic C atoms and methylene groups, U(H) set to 1.5Ueq(C) for methyl groups and U(H) set to 1.5Ueq(O) for the hydroxy groups.

Figures

Fig. 1.
The molecular structure of one molecule in the asymmetric unit of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
Fig. 2.
The asymmetric unit of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
Fig. 3.
Hydrogen bonds in the crystal structure of the title compound, viewed along [0 1 0]. Symmetry operators: i -x + 3/2, -y + 1, z - 1/2; iix + 1/2, -y + 1/2, -z.
Fig. 4.
The pseudo-trigonal packing of the molecules in the crystal structure, viewed approximately along [1 0 0].
Fig. 5.
The packing of the title compound, viewed along [-1 0 0].

Crystal data

C8H10OF(000) = 792
Mr = 122.16Dx = 1.101 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3039 reflections
a = 5.9318 (19) Åθ = 4.1–26.3°
b = 16.514 (3) ŵ = 0.07 mm1
c = 22.574 (9) ÅT = 200 K
V = 2211.2 (12) Å3Block, colourless
Z = 120.47 × 0.32 × 0.18 mm

Data collection

Oxford Diffraction Xcalibur diffractometer2594 independent reflections
Radiation source: fine-focus sealed tube1457 reflections with I > 2σ(I)
graphiteRint = 0.029
ω scansθmax = 26.3°, θmin = 4.1°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005)h = −7→7
Tmin = 0.977, Tmax = 0.987k = −20→20
9193 measured reflectionsl = −28→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.91w = 1/[σ2(Fo2) + (0.0451P)2] where P = (Fo2 + 2Fc2)/3
2594 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.12 e Å3

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.8108 (3)0.52361 (10)0.08295 (8)0.0654 (5)
H10.70250.54760.06660.098*
C110.7567 (4)0.50737 (12)0.14108 (12)0.0477 (6)
C120.9136 (4)0.46767 (13)0.17501 (12)0.0526 (6)
H121.05280.45130.15800.063*
C130.8699 (4)0.45164 (13)0.23352 (12)0.0564 (7)
H130.98060.42480.25670.068*
C140.6677 (4)0.47378 (13)0.25946 (11)0.0550 (6)
C150.5121 (4)0.51333 (14)0.22438 (12)0.0596 (7)
H150.37220.52930.24120.072*
C160.5542 (4)0.53024 (14)0.16553 (12)0.0561 (6)
H160.44450.55740.14220.067*
C170.6225 (5)0.45737 (16)0.32442 (12)0.0761 (8)
H1710.45860.46180.33200.091*
H1720.66910.40130.33390.091*
C180.7444 (6)0.51441 (17)0.36405 (14)0.0893 (10)
H1810.90690.51040.35670.134*
H1820.71290.50060.40540.134*
H1830.69390.56990.35610.134*
O20.6558 (3)0.03018 (10)−0.02023 (8)0.0633 (5)
H20.53700.0151−0.03720.095*
C210.6100 (4)0.09676 (13)0.01496 (11)0.0475 (6)
C220.4167 (4)0.14128 (13)0.00819 (11)0.0517 (6)
H220.30930.1269−0.02120.062*
C230.3797 (4)0.20736 (13)0.04461 (11)0.0544 (6)
H230.24570.23820.03980.065*
C240.5336 (5)0.22977 (13)0.08795 (11)0.0559 (6)
C250.7266 (4)0.18400 (16)0.09256 (12)0.0652 (7)
H250.83620.19840.12140.078*
C260.7663 (4)0.11799 (15)0.05676 (11)0.0603 (7)
H260.90100.08740.06110.072*
C270.4897 (6)0.30142 (15)0.12800 (13)0.0811 (9)
H2710.63480.32040.14460.097*
H2720.42530.34610.10410.097*
C280.3328 (5)0.28252 (17)0.17770 (14)0.0902 (10)
H2810.18550.26690.16170.135*
H2820.31550.33040.20290.135*
H2830.39420.23780.20120.135*
O31.0222 (3)0.41786 (9)0.51646 (7)0.0624 (5)
H31.13360.44880.51230.094*
C311.0136 (4)0.36433 (13)0.46965 (10)0.0470 (6)
C321.1787 (4)0.36152 (13)0.42740 (11)0.0540 (6)
H321.30320.39760.42950.065*
C331.1639 (4)0.30624 (14)0.38184 (11)0.0580 (7)
H331.27910.30510.35260.070*
C340.9863 (4)0.25252 (13)0.37750 (11)0.0537 (6)
C350.8229 (4)0.25701 (14)0.42103 (12)0.0593 (7)
H350.69840.22100.41910.071*
C360.8333 (4)0.31177 (13)0.46722 (11)0.0537 (6)
H360.71890.31320.49660.064*
C370.9689 (5)0.19321 (15)0.32700 (13)0.0732 (8)
H3711.12040.18580.30940.088*
H3720.91980.14020.34290.088*
C380.8098 (6)0.21842 (17)0.27951 (14)0.0975 (11)
H3810.65810.22440.29620.146*
H3820.80740.17720.24830.146*
H3830.85890.27030.26280.146*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0630 (11)0.0822 (12)0.0510 (12)0.0136 (9)0.0028 (10)0.0007 (9)
C110.0533 (14)0.0462 (13)0.0436 (15)−0.0010 (11)−0.0005 (14)−0.0036 (12)
C120.0483 (14)0.0503 (12)0.0592 (17)0.0030 (12)0.0019 (14)−0.0025 (13)
C130.0525 (16)0.0599 (14)0.0568 (18)0.0011 (12)−0.0090 (14)0.0066 (13)
C140.0585 (16)0.0567 (13)0.0499 (17)−0.0093 (14)−0.0015 (15)−0.0014 (13)
C150.0496 (14)0.0723 (16)0.0570 (18)0.0053 (13)0.0067 (14)−0.0043 (14)
C160.0502 (15)0.0632 (14)0.0549 (18)0.0086 (13)−0.0040 (14)0.0009 (13)
C170.0816 (19)0.0873 (18)0.0593 (19)−0.0029 (16)0.0041 (17)0.0073 (16)
C180.107 (2)0.103 (2)0.0581 (19)0.0122 (19)−0.0030 (19)−0.0198 (17)
O20.0573 (10)0.0672 (10)0.0655 (12)0.0142 (9)−0.0156 (9)−0.0082 (9)
C210.0473 (14)0.0467 (12)0.0484 (15)0.0009 (12)−0.0050 (13)0.0052 (12)
C220.0460 (14)0.0564 (13)0.0527 (16)0.0001 (12)−0.0121 (12)0.0067 (13)
C230.0507 (14)0.0492 (13)0.0634 (17)0.0051 (12)−0.0008 (14)0.0063 (13)
C240.0579 (16)0.0531 (13)0.0566 (17)−0.0128 (13)−0.0007 (15)0.0028 (12)
C250.0577 (16)0.0768 (17)0.0610 (19)−0.0112 (14)−0.0163 (15)−0.0031 (16)
C260.0467 (15)0.0769 (17)0.0574 (17)0.0039 (12)−0.0119 (14)0.0031 (15)
C270.093 (2)0.0643 (16)0.086 (2)−0.0161 (16)−0.004 (2)−0.0143 (16)
C280.083 (2)0.095 (2)0.093 (2)0.0042 (17)0.004 (2)−0.0303 (19)
O30.0623 (11)0.0705 (11)0.0543 (11)−0.0142 (9)0.0107 (10)−0.0089 (9)
C310.0506 (13)0.0472 (12)0.0433 (15)−0.0024 (12)0.0003 (13)0.0039 (11)
C320.0473 (13)0.0573 (13)0.0576 (17)−0.0096 (12)0.0090 (14)−0.0003 (14)
C330.0556 (15)0.0645 (15)0.0539 (18)0.0014 (14)0.0101 (13)−0.0001 (13)
C340.0566 (14)0.0490 (13)0.0556 (17)0.0033 (13)−0.0017 (15)0.0041 (12)
C350.0573 (15)0.0549 (14)0.0657 (19)−0.0151 (12)−0.0046 (16)0.0063 (14)
C360.0531 (14)0.0563 (14)0.0517 (17)−0.0103 (13)0.0086 (13)0.0076 (13)
C370.088 (2)0.0570 (14)0.074 (2)−0.0032 (15)−0.0042 (18)−0.0060 (15)
C380.144 (3)0.0730 (18)0.076 (2)0.001 (2)−0.022 (2)−0.0089 (16)

Geometric parameters (Å, °)

O1—C111.377 (3)C25—C261.377 (3)
O1—H10.8400C25—H250.9500
C11—C121.372 (3)C26—H260.9500
C11—C161.375 (3)C27—C281.491 (4)
C12—C131.372 (3)C27—H2710.9900
C12—H120.9500C27—H2720.9900
C13—C141.384 (3)C28—H2810.9800
C13—H130.9500C28—H2820.9800
C14—C151.380 (3)C28—H2830.9800
C14—C171.515 (4)O3—C311.379 (2)
C15—C161.380 (3)O3—H30.8400
C15—H150.9500C31—C321.368 (3)
C16—H160.9500C31—C361.378 (3)
C17—C181.487 (4)C32—C331.378 (3)
C17—H1710.9900C32—H320.9500
C17—H1720.9900C33—C341.381 (3)
C18—H1810.9800C33—H330.9500
C18—H1820.9800C34—C351.382 (3)
C18—H1830.9800C34—C371.506 (3)
O2—C211.383 (3)C35—C361.382 (3)
O2—H20.8400C35—H350.9500
C21—C261.368 (3)C36—H360.9500
C21—C221.371 (3)C37—C381.488 (4)
C22—C231.384 (3)C37—H3710.9900
C22—H220.9500C37—H3720.9900
C23—C241.388 (3)C38—H3810.9800
C23—H230.9500C38—H3820.9800
C24—C251.376 (4)C38—H3830.9800
C24—C271.512 (3)
C11—O1—H1109.5C21—C26—C25119.5 (2)
C12—C11—C16120.0 (2)C21—C26—H26120.3
C12—C11—O1117.8 (2)C25—C26—H26120.3
C16—C11—O1122.2 (2)C28—C27—C24113.2 (2)
C11—C12—C13120.1 (2)C28—C27—H271108.9
C11—C12—H12120.0C24—C27—H271108.9
C13—C12—H12120.0C28—C27—H272108.9
C12—C13—C14121.4 (2)C24—C27—H272108.9
C12—C13—H13119.3H271—C27—H272107.8
C14—C13—H13119.3C27—C28—H281109.5
C15—C14—C13117.5 (2)C27—C28—H282109.5
C15—C14—C17121.4 (2)H281—C28—H282109.5
C13—C14—C17121.0 (2)C27—C28—H283109.5
C14—C15—C16121.8 (2)H281—C28—H283109.5
C14—C15—H15119.1H282—C28—H283109.5
C16—C15—H15119.1C31—O3—H3109.5
C11—C16—C15119.3 (2)C32—C31—O3122.0 (2)
C11—C16—H16120.4C32—C31—C36120.4 (2)
C15—C16—H16120.4O3—C31—C36117.6 (2)
C18—C17—C14112.5 (2)C33—C32—C31119.8 (2)
C18—C17—H171109.1C33—C32—H32120.1
C14—C17—H171109.1C31—C32—H32120.1
C18—C17—H172109.1C32—C33—C34121.8 (2)
C14—C17—H172109.1C32—C33—H33119.1
H171—C17—H172107.8C34—C33—H33119.1
C17—C18—H181109.5C35—C34—C33116.7 (2)
C17—C18—H182109.5C35—C34—C37121.7 (2)
H181—C18—H182109.5C33—C34—C37121.6 (2)
C17—C18—H183109.5C36—C35—C34122.7 (2)
H181—C18—H183109.5C36—C35—H35118.6
H182—C18—H183109.5C34—C35—H35118.6
C21—O2—H2109.5C35—C36—C31118.5 (2)
C26—C21—C22120.4 (2)C35—C36—H36120.8
C26—C21—O2117.8 (2)C31—C36—H36120.8
C22—C21—O2121.8 (2)C38—C37—C34114.0 (2)
C21—C22—C23119.3 (2)C38—C37—H371108.8
C21—C22—H22120.3C34—C37—H371108.8
C23—C22—H22120.3C38—C37—H372108.8
C22—C23—C24121.6 (2)C34—C37—H372108.8
C22—C23—H23119.2H371—C37—H372107.6
C24—C23—H23119.2C37—C38—H381109.5
C25—C24—C23117.0 (2)C37—C38—H382109.5
C25—C24—C27121.9 (3)H381—C38—H382109.5
C23—C24—C27121.1 (2)C37—C38—H383109.5
C24—C25—C26122.2 (2)H381—C38—H383109.5
C24—C25—H25118.9H382—C38—H383109.5
C26—C25—H25118.9
C16—C11—C12—C13−0.8 (3)C27—C24—C25—C26179.1 (2)
O1—C11—C12—C13178.6 (2)C22—C21—C26—C250.8 (4)
C11—C12—C13—C140.9 (3)O2—C21—C26—C25179.9 (2)
C12—C13—C14—C15−0.6 (3)C24—C25—C26—C210.2 (4)
C12—C13—C14—C17−178.8 (2)C25—C24—C27—C28−100.3 (3)
C13—C14—C15—C160.2 (3)C23—C24—C27—C2879.8 (3)
C17—C14—C15—C16178.4 (2)O3—C31—C32—C33179.2 (2)
C12—C11—C16—C150.5 (3)C36—C31—C32—C330.5 (3)
O1—C11—C16—C15−178.9 (2)C31—C32—C33—C34−0.4 (3)
C14—C15—C16—C11−0.2 (3)C32—C33—C34—C350.2 (3)
C15—C14—C17—C18−102.5 (3)C32—C33—C34—C37178.9 (2)
C13—C14—C17—C1875.6 (3)C33—C34—C35—C36−0.3 (3)
C26—C21—C22—C23−0.9 (3)C37—C34—C35—C36−178.9 (2)
O2—C21—C22—C23−179.9 (2)C34—C35—C36—C310.4 (3)
C21—C22—C23—C240.0 (3)C32—C31—C36—C35−0.5 (3)
C22—C23—C24—C250.9 (3)O3—C31—C36—C35−179.27 (19)
C22—C23—C24—C27−179.2 (2)C35—C34—C37—C3878.0 (3)
C23—C24—C25—C26−1.0 (4)C33—C34—C37—C38−100.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.841.842.662 (2)166
O2—H2···O1ii0.841.812.642 (2)171
O3—H3···O2iii0.841.842.664 (2)165

Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) x−1/2, −y+1/2, −z; (iii) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2071).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Butcher, R. J., Diven, G., Erickson, G., Jasinski, J., Mockler, G. M., Pozdniakov, R. Y. & Sinn, E. (1995). Inorg. Chim. Acta, 239, 107–116.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography