PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o511.
Published online 2009 February 11. doi:  10.1107/S1600536809001780
PMCID: PMC2968583

1,2-Dimorpholinoethane-1,2-dithione

Abstract

The title compound, C10H16N2O2S2, was prepared by a reaction of 4-tert-butyl­benzene, morpholine and sulfur. In the crystal structure, both morpholine rings display the typical chair conformation. Weak C—H(...)O hydrogen bonding is present in the crystal structure.

Related literature

For general background, see: Carmack (1989 [triangle]). For a related structure, see: Rozentsveig et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o511-scheme1.jpg

Experimental

Crystal data

  • C10H16N2O2S2
  • M r = 260.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o511-efi1.jpg
  • a = 34.661 (7) Å
  • b = 6.5155 (12) Å
  • c = 10.6632 (19) Å
  • β = 93.633 (2)°
  • V = 2403.3 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.43 mm−1
  • T = 295 (2) K
  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.905, T max = 0.940
  • 6026 measured reflections
  • 2118 independent reflections
  • 1673 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.086
  • S = 1.05
  • 2118 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001780/xu2457sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001780/xu2457Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was supported by the Educational Development Foundation of the Shanghai Educational Committee, China (AB0448).

supplementary crystallographic information

Comment

Willgerodt-Kindler reaction is an important synthesize reaction of medicament, but the reaction mechanism is not completely clear (Carmack, 1989). To investigate the reaction mechanism of Willgerodt-Kindler reaction, we performed the reaction of morpholine with 4-tert-butylphenyl and sulfur and obtained single crystals of the title compound. Herein we present its X-ray structure.

The molecular structure of the title compound is shown in Fig. 1. Within the molecule structure, two C═S bond distances are 1.656 (2) Å and 1.666 (2) Å, respectively. The two planes containing the C—S bonds, C1/C4/N1/C5/S1 and C7/C10/N2/C6/S2, are nearly perpendicular to each other with a dihedral angle of 89.94 (7)°. Both morpholino rings display the typical chair conformation, which agrees with that found in the dimorpholine derivative, 4-chloro-N-(2-(4-methylphenyl)-1,2-dimorpholinoethylidene)benzenesulfonamide (Rozentsveig et al., 2005). The adjacent molecules are linked together via C—H···O weak hydrogen bonding (Table 1).

Experimental

The title compound was prepared by a reaction of 4'-tert-butylacetophenone (17.72 g, 0.1 mol), morpholine (33 ml, 0.375 mol) and sulfur (5.29 g, 0.165 mol) at 397–405 K until the reaction mixture changed color to puce. Add methanol (100 ml) and active carbon (1 g) into the reaction mixture after the reaction undergoing 10 h. After the reaction mixture cooling to room temperature, the filemot solid product was separated from the reaction mixture. The filemot solid product and was mixed with an ethanol-water solution (1:3) and an aqueous solution (20 ml) of NaOH (0.05 g 1.14 mmol). The mixture was refluxed for 4 h at 357 K and the kelly depositions were obtained from the cooling reaction mixture. The single crystals of the title compound were obtained by recrystallization of the solid product from an ethanol solution after 2 d.

Refinement

H atoms were placed in calculated positions with C—H = 0.97 Å and included in the final cycles of refinement in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with 30% probability displacement ellipsoids.

Crystal data

C10H16N2O2S2F(000) = 1104
Mr = 260.37Dx = 1.439 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2010 reflections
a = 34.661 (7) Åθ = 2.0–25.0°
b = 6.5155 (12) ŵ = 0.43 mm1
c = 10.6632 (19) ÅT = 295 K
β = 93.633 (2)°Prism, colorless
V = 2403.3 (8) Å30.25 × 0.20 × 0.15 mm
Z = 8

Data collection

Bruker APEX CCD diffractometer2118 independent reflections
Radiation source: fine-focus sealed tube1673 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −39→40
Tmin = 0.905, Tmax = 0.940k = −7→7
6026 measured reflectionsl = −12→7

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.086w = 1/[σ2(Fo2) + (0.0357P)2 + 1.3632P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2118 reflectionsΔρmax = 0.19 e Å3
146 parametersΔρmin = −0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.372884 (17)−0.19547 (8)0.11699 (5)0.0400 (2)
S20.380220 (17)0.28649 (9)0.28638 (5)0.04075 (19)
N10.32643 (5)0.1044 (3)0.03467 (16)0.0338 (4)
N20.41166 (5)0.2706 (3)0.06457 (16)0.0322 (4)
O10.27344 (4)0.2067 (3)−0.16300 (16)0.0515 (5)
O20.48123 (4)0.2411 (3)−0.04519 (17)0.0557 (5)
C10.29717 (6)−0.0402 (4)−0.0084 (2)0.0458 (6)
H1A0.2748−0.02690.04120.055*
H1B0.3070−0.17900.00140.055*
C20.28575 (7)0.0009 (4)−0.1446 (2)0.0504 (6)
H2A0.3076−0.0258−0.19470.060*
H2B0.2650−0.0913−0.17270.060*
C30.30297 (7)0.3439 (4)−0.1261 (2)0.0489 (6)
H3A0.29400.4833−0.14120.059*
H3B0.32490.3208−0.17650.059*
C40.31559 (6)0.3191 (3)0.0111 (2)0.0400 (6)
H4A0.33750.40790.03270.048*
H4B0.29470.35730.06260.048*
C50.35897 (6)0.0447 (3)0.09058 (18)0.0294 (5)
C60.38568 (6)0.2090 (3)0.13964 (18)0.0288 (5)
C70.41350 (6)0.2047 (3)−0.0666 (2)0.0356 (5)
H7A0.41010.3225−0.12180.043*
H7B0.39280.1081−0.08780.043*
C80.45103 (6)0.1074 (4)−0.0844 (2)0.0490 (6)
H8A0.4532−0.0187−0.03610.059*
H8B0.45290.0733−0.17240.059*
C90.47931 (6)0.2926 (4)0.0832 (2)0.0508 (6)
H9A0.50130.37830.10930.061*
H9B0.48090.16820.13330.061*
C100.44318 (6)0.4028 (4)0.1069 (2)0.0433 (6)
H10A0.44210.43200.19580.052*
H10B0.44180.53150.06110.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0510 (4)0.0286 (3)0.0395 (4)0.0032 (3)−0.0054 (3)0.0015 (2)
S20.0501 (4)0.0399 (3)0.0323 (3)−0.0051 (3)0.0034 (3)−0.0076 (2)
N10.0288 (9)0.0299 (9)0.0418 (11)−0.0012 (8)−0.0053 (8)0.0005 (8)
N20.0271 (9)0.0358 (10)0.0336 (10)−0.0022 (8)0.0007 (7)−0.0031 (8)
O10.0382 (9)0.0582 (11)0.0560 (11)0.0050 (8)−0.0147 (7)0.0016 (8)
O20.0339 (9)0.0722 (12)0.0620 (12)−0.0023 (8)0.0117 (8)−0.0043 (9)
C10.0345 (12)0.0426 (14)0.0587 (16)−0.0099 (11)−0.0092 (11)0.0003 (11)
C20.0424 (14)0.0558 (16)0.0512 (16)−0.0012 (12)−0.0115 (11)−0.0101 (12)
C30.0402 (13)0.0461 (15)0.0594 (16)0.0046 (12)−0.0054 (11)0.0089 (12)
C40.0301 (11)0.0351 (12)0.0539 (15)0.0058 (10)−0.0048 (10)−0.0021 (10)
C50.0327 (11)0.0323 (11)0.0234 (11)0.0004 (9)0.0030 (8)−0.0003 (9)
C60.0273 (10)0.0266 (11)0.0320 (12)0.0036 (9)−0.0032 (9)0.0025 (9)
C70.0347 (12)0.0405 (13)0.0316 (12)0.0002 (10)0.0013 (9)0.0012 (10)
C80.0437 (14)0.0554 (16)0.0486 (15)0.0028 (12)0.0090 (11)−0.0080 (12)
C90.0314 (13)0.0636 (17)0.0571 (17)−0.0067 (12)−0.0003 (11)0.0028 (13)
C100.0344 (12)0.0436 (14)0.0517 (15)−0.0106 (11)0.0020 (10)−0.0075 (11)

Geometric parameters (Å, °)

S1—C51.656 (2)C3—C41.509 (3)
S2—C61.666 (2)C3—H3A0.9700
N1—C51.301 (2)C3—H3B0.9700
N1—C11.438 (3)C4—H4A0.9700
N1—C41.466 (3)C4—H4B0.9700
N2—C61.305 (3)C5—C61.488 (3)
N2—C101.441 (2)C7—C81.470 (3)
N2—C71.468 (3)C7—H7A0.9700
O1—C31.397 (3)C7—H7B0.9700
O1—C21.417 (3)C8—H8A0.9700
O2—C81.405 (3)C8—H8B0.9700
O2—C91.415 (3)C9—C101.479 (3)
C1—C21.505 (3)C9—H9A0.9700
C1—H1A0.9700C9—H9B0.9700
C1—H1B0.9700C10—H10A0.9700
C2—H2A0.9700C10—H10B0.9700
C2—H2B0.9700
C5—N1—C1121.59 (18)H4A—C4—H4B108.3
C5—N1—C4124.67 (17)N1—C5—C6116.62 (18)
C1—N1—C4113.73 (16)N1—C5—S1126.50 (16)
C6—N2—C10122.03 (18)C6—C5—S1116.84 (14)
C6—N2—C7124.58 (17)N2—C6—C5116.33 (18)
C10—N2—C7113.29 (17)N2—C6—S2127.33 (16)
C3—O1—C2110.98 (16)C5—C6—S2116.28 (15)
C8—O2—C9110.79 (18)N2—C7—C8109.97 (17)
N1—C1—C2109.19 (19)N2—C7—H7A109.7
N1—C1—H1A109.8C8—C7—H7A109.7
C2—C1—H1A109.8N2—C7—H7B109.7
N1—C1—H1B109.8C8—C7—H7B109.7
C2—C1—H1B109.8H7A—C7—H7B108.2
H1A—C1—H1B108.3O2—C8—C7110.04 (19)
O1—C2—C1111.12 (19)O2—C8—H8A109.7
O1—C2—H2A109.4C7—C8—H8A109.7
C1—C2—H2A109.4O2—C8—H8B109.7
O1—C2—H2B109.4C7—C8—H8B109.7
C1—C2—H2B109.4H8A—C8—H8B108.2
H2A—C2—H2B108.0O2—C9—C10111.87 (19)
O1—C3—C4111.5 (2)O2—C9—H9A109.2
O1—C3—H3A109.3C10—C9—H9A109.2
C4—C3—H3A109.3O2—C9—H9B109.2
O1—C3—H3B109.3C10—C9—H9B109.2
C4—C3—H3B109.3H9A—C9—H9B107.9
H3A—C3—H3B108.0N2—C10—C9106.86 (19)
N1—C4—C3108.89 (18)N2—C10—H10A110.4
N1—C4—H4A109.9C9—C10—H10A110.4
C3—C4—H4A109.9N2—C10—H10B110.4
N1—C4—H4B109.9C9—C10—H10B110.4
C3—C4—H4B109.9H10A—C10—H10B108.6

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.972.513.400 (3)153

Symmetry codes: (i) −x+1/2, y−1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2457).

References

  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Winsonsin, USA.
  • Carmack, M. (1989). J. Heterocycl. Chem 26, 1319–1323.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Rozentsveig, I. B., Levkovskaya, G. G., Rozentsveig, G. N., Mirskova, A. N., Krivdin, L. B., Larina, L. I. & Albanov, A. I. (2005). Tetrahedron Lett 46, 8889–8893.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography