PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o461.
Published online 2009 February 4. doi:  10.1107/S160053680900347X
PMCID: PMC2968576

1-(8-Bromo-2-methyl-4-thioxo-3,4,5,6-tetra­hydro-2H-2,6-methano-1,3-benzoxazocin-11-yl)ethanone

Abstract

In the title compound, C14H14BrNO2S, there are two similar non-equivalent mol­ecules in the asymmetric unit, displaying three chiral centres each. In the crystal structure, they are linked by inter­molecular N—H(...)O hydrogen bonds to form infinite chains, which are in turn connected by weak Br(...)H and S(...)H inter­actions.

Related literature

For related literature on the applications of thio­phene derivatives, see: Zaragoza Dorwald (2000 [triangle]); Kovalenko & Victorova (2005 [triangle]). For analogous conformations, see: Bilokin et al. (1988 [triangle]); Raev et al. (2004 [triangle]); Biala et al. (2002 [triangle]); Konovalova et al. (2007 [triangle]); O’Callaghan et al. (1997 [triangle]); Zefirov & Zorky (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o461-scheme1.jpg

Experimental

Crystal data

  • C14H14BrNO2S
  • M r = 340.23
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o461-efi1.jpg
  • a = 8.213 (5) Å
  • b = 11.625 (7) Å
  • c = 15.156 (10) Å
  • α = 98.67 (5)°
  • β = 99.09 (5)°
  • γ = 101.81 (5)°
  • V = 1373.1 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.14 mm−1
  • T = 293 (2) K
  • 0.6 × 0.1 × 0.05 mm

Data collection

  • Siemens P3/PC diffractometer
  • Absorption correction: integration (XPREP; Siemens, 1991 [triangle]) T min = 0.611, T max = 0.855
  • 7869 measured reflections
  • 4773 independent reflections
  • 3383 reflections with I > 2/s(I)
  • R int = 0.012
  • 2 standard reflections every 98 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.118
  • S = 1.03
  • 4773 reflections
  • 348 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: P3 (Siemens, 1991 [triangle]); cell refinement: P3; data reduction: XDISK and XPREP (Siemens, 1991 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900347X/bg2221sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900347X/bg2221Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The fragment of thiophene is a very important pharmacophore part of many biologically active compounds. Thiophene derivatives are used as antitussives (Zaragoza Dorwald, 2000; Kovalenko & Victorova, 2005), antibiotics, anaesthetics, antiparasitics, resolvents, anthelmintic drugs, anticholinergic drugs, antiulcer agents, antihistamines. Investigation of the molecular structure of these compounds may provide useful information for understanding the mechanism of their biological activity. In this paper we report the molecular and crystal structure of the 2-aroyl-3-amino-4-arylsulfonyl-5-arylamino-thiophene. There are two molecules in the asymmetric unit (labelled A and B in Fig. 1), with a similar distribution of chiral centers (C1, C9 and C13). Both molecules have similar geometrical characteristics: the piperidine-2-tione and tetrahydropyran rings adopt a half-chair conformation; deviations of the C1 and C13 atoms of the tetrahydropyrimidine ring from the mean-square planes of the remaining atoms in the ring are -0.46 (1) Å, 0.44 (1) Å and 0.37 (1) Å, -0.51 (1) Å in molecules A and B, respectively. Deviations of the C9 and C13 atoms of the tetrahydropyrane from the mean-square planes of the remaining atoms in the rings are -0.36 (1) Å, 0.44 (1) Å, in both molecules. The two rings are fused in such way that the C16 methyl group and the H atom at the C1 have equatorial orientation (the C7—C8—C9—C16 and C7—C2—C1—H1A torsion angles being -177.2 (3)° and -140.7 (3)° (molecule A) and -175.2 (3)° and -140.0 (3)° (molecule B). The same type of ring fusion have been observed in related compounds (Konovalova et al., 2007; Raev et al., 2004; Bilokin et al., 1988; O'Callaghan et al., 1997; Biala et al., 2002). The C13—C14 bond has an equatorial orientation with regard to the piperidine-2-tione ring (the N10—C9—C13—C14 torsion angle being -176.6 (3)° and -179.8 (3)° (A, B respectively). The acetyl group adopts an orthogonal arrangement relative to the C9—C13 bond (the C9—C13—C14—O14 torsion angle being 92.4 (4)°, -89.8 (4)° (A, B respectively). The main H-bonding interactions are presented in Table 1. Molecules pack as infinite chains of alternating A and B molecules, due to intrachain N—H···O and weak C—H···Br interactions. Neighbouring chains in turn are connected by weak C—H···.S interactions as well as by stacking interactions between phenyl rings with an interplanar distance of 3.37 (1) Å.

Experimental

The title compound was obtained by one-pot synthesis, starting from a mixture of 1 mmol 6-bromocoumarine-3-thioamide and 1.2 mmol of 2,4-pentanedione in 5 ml of methanol containing catalytic amounts of piperidine, which was refluxed for 5 min. Then it was cooled to 500 C and 2 mmol of potassium alkali was added. The reaction mixture was stirred at 500 C for 6 h (monitored by TLC). Then it was cooled to r.t. and diluted with water. Formed precipitate was filtered and washed with water and water–methanol, 1:1.

Refinement

All H atoms were located from an electron density difference map and included in the refinement in the riding motion approximation with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl groups and 1.2 times Ueq of the carrier atom for the other atoms.

Figures

Fig. 1.
View of the title compound with atomic numbering. Displacement ellipsoids drawn at a 50% probability level.

Crystal data

C14H14BrNO2SZ = 4
Mr = 340.23F(000) = 688
Triclinic, P1Dx = 1.646 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.213 (5) ÅCell parameters from 24 reflections
b = 11.625 (7) Åθ = 10–11°
c = 15.156 (10) ŵ = 3.14 mm1
α = 98.67 (5)°T = 293 K
β = 99.09 (5)°Needle, colourless
γ = 101.81 (5)°0.6 × 0.1 × 0.05 mm
V = 1373.1 (15) Å3

Data collection

Siemens P3/PC diffractometer3383 reflections with I > 2/s(I)
Radiation source: sealed tubeRint = 0.012
graphiteθmax = 25.0°, θmin = 2.1°
2θ/θ scansh = −9→4
Absorption correction: integration (XPREP; Siemens, 1991)k = −13→13
Tmin = 0.611, Tmax = 0.855l = −18→18
7869 measured reflections2 standard reflections every 98 reflections
4773 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.118w = 1/[σ2(Fo2) + (0.0597P)2 + 0.9457P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4773 reflectionsΔρmax = 0.37 e Å3
348 parametersΔρmin = −0.43 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1A0.62044 (6)0.83270 (4)0.58068 (4)0.05907 (14)
S1A0.17210 (13)0.30146 (10)0.67922 (7)0.0413 (3)
C1A0.6441 (5)0.5017 (3)0.7900 (2)0.0269 (8)
H1A0.69250.56950.84060.032*
C2A0.6686 (4)0.5407 (3)0.7023 (2)0.0273 (8)
C3A0.6433 (5)0.6509 (3)0.6851 (2)0.0295 (9)
H3A0.61220.70240.72910.035*
C4A0.6641 (5)0.6833 (3)0.6045 (3)0.0346 (9)
C5A0.7090 (5)0.6098 (4)0.5373 (3)0.0421 (11)
H5A0.72180.63400.48250.050*
C6A0.7350 (5)0.4992 (4)0.5518 (2)0.0373 (10)
H6A0.76780.44880.50770.045*
C7A0.7109 (4)0.4659 (3)0.6333 (2)0.0271 (8)
O8A0.7374 (3)0.3533 (2)0.64432 (16)0.0299 (6)
C9A0.6713 (4)0.3045 (3)0.7161 (2)0.0259 (8)
N10A0.4847 (4)0.2771 (2)0.69181 (19)0.0284 (7)
H10A0.43710.21050.65510.034*
C11A0.3799 (5)0.3432 (3)0.7199 (2)0.0302 (9)
C12A0.4574 (5)0.4563 (3)0.7894 (2)0.0315 (9)
H12A0.44360.44110.84930.038*
H12B0.39790.51750.77620.038*
C13A0.7290 (4)0.3964 (3)0.8053 (2)0.0264 (8)
H13A0.68310.35990.85310.032*
C14A0.9203 (5)0.4390 (3)0.8362 (2)0.0307 (9)
O14A1.0003 (3)0.5252 (2)0.8167 (2)0.0447 (8)
C15A1.0060 (6)0.3680 (4)0.8959 (3)0.0531 (13)
H15A1.12540.40390.91210.080*
H15B0.98810.28740.86370.080*
H15C0.95920.36750.95010.080*
C16A0.7249 (5)0.1878 (3)0.7156 (3)0.0370 (10)
H16A0.68470.13820.65640.056*
H16B0.67770.14760.75990.056*
H16C0.84640.20350.73040.056*
Br1B0.59308 (7)1.32613 (4)1.02809 (3)0.05332 (14)
S1B−0.10276 (13)0.80780 (9)0.93052 (6)0.0360 (2)
C1B0.1321 (4)1.0087 (3)0.7679 (2)0.0230 (8)
H1AA0.11251.07790.74160.028*
C2B0.3048 (4)1.0401 (3)0.8293 (2)0.0252 (8)
C3B0.3636 (5)1.1495 (3)0.8877 (2)0.0278 (9)
H3AA0.29631.20480.88910.033*
C4B0.5208 (5)1.1774 (3)0.9439 (2)0.0356 (10)
C5B0.6249 (4)1.0974 (3)0.9440 (2)0.0320 (9)
H5AA0.73121.11680.98200.038*
C6B0.5661 (5)0.9884 (3)0.8862 (2)0.0319 (9)
H6AA0.63430.93370.88450.038*
C7B0.4067 (4)0.9585 (3)0.8304 (2)0.0224 (8)
O8B0.3583 (3)0.84740 (19)0.77593 (16)0.0274 (6)
C9B0.1825 (4)0.8068 (3)0.7368 (2)0.0271 (8)
N10B0.0844 (4)0.7827 (2)0.8077 (2)0.0293 (7)
H10B0.08210.71480.82400.035*
C11B−0.0017 (4)0.8516 (3)0.8502 (2)0.0266 (8)
C12B−0.0047 (4)0.9703 (3)0.8219 (2)0.0271 (8)
H12C0.01081.03120.87590.032*
H12D−0.11500.96490.78520.032*
C13B0.1177 (4)0.9023 (3)0.6920 (2)0.0235 (8)
H13B−0.00290.87000.66530.028*
C14B0.2102 (4)0.9365 (3)0.6148 (2)0.0291 (9)
O14B0.3348 (4)1.0153 (2)0.63118 (17)0.0438 (8)
C15B0.1367 (7)0.8714 (5)0.5217 (3)0.0717 (17)
H15D0.16540.92220.47930.108*
H15F0.01560.84780.51450.108*
H15G0.18110.80150.51020.108*
C16B0.1689 (5)0.6886 (3)0.6746 (3)0.0413 (11)
H16F0.20550.63340.71000.062*
H16G0.23940.70130.63040.062*
H16D0.05320.65630.64390.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br1A0.0566 (3)0.0473 (2)0.0811 (3)0.0145 (2)0.0039 (2)0.0429 (2)
S1A0.0277 (5)0.0528 (6)0.0445 (5)0.0050 (4)0.0101 (4)0.0157 (5)
C1A0.038 (2)0.0186 (15)0.0213 (16)0.0018 (14)0.0007 (15)0.0060 (13)
C2A0.0252 (19)0.0281 (17)0.0269 (17)0.0003 (14)0.0060 (15)0.0076 (14)
C3A0.035 (2)0.0262 (17)0.0256 (17)0.0073 (15)−0.0003 (15)0.0065 (14)
C4A0.0252 (19)0.0378 (19)0.044 (2)0.0079 (16)0.0015 (16)0.0211 (16)
C5A0.036 (2)0.056 (2)0.0323 (19)−0.0007 (19)0.0027 (17)0.0205 (18)
C6A0.039 (2)0.048 (2)0.0257 (17)0.0051 (18)0.0129 (16)0.0090 (16)
C7A0.0290 (19)0.0293 (17)0.0186 (15)−0.0024 (15)0.0033 (14)0.0046 (13)
O8A0.0365 (14)0.0249 (12)0.0318 (12)0.0068 (10)0.0166 (11)0.0064 (10)
C9A0.0244 (18)0.0211 (15)0.0372 (18)0.0032 (14)0.0144 (15)0.0151 (13)
N10A0.0354 (17)0.0108 (13)0.0313 (15)−0.0076 (12)0.0090 (13)−0.0047 (11)
C11A0.046 (2)0.0345 (18)0.0158 (15)0.0102 (17)0.0150 (15)0.0116 (13)
C12A0.033 (2)0.0260 (17)0.0356 (19)0.0086 (15)0.0080 (16)0.0041 (15)
C13A0.0279 (19)0.0251 (16)0.0298 (17)0.0018 (14)0.0173 (15)0.0107 (13)
C14A0.036 (2)0.0220 (17)0.0316 (18)0.0062 (15)0.0043 (16)−0.0001 (14)
O14A0.0347 (15)0.0250 (13)0.0719 (19)−0.0046 (11)0.0084 (14)0.0193 (13)
C15A0.044 (3)0.055 (2)0.061 (3)0.001 (2)0.003 (2)0.033 (2)
C16A0.036 (2)0.0302 (19)0.050 (2)0.0109 (17)0.0164 (18)0.0104 (16)
Br1B0.0680 (3)0.0420 (2)0.0324 (2)−0.0129 (2)0.0054 (2)−0.00752 (17)
S1B0.0361 (5)0.0435 (5)0.0338 (5)0.0083 (4)0.0157 (4)0.0162 (4)
C1B0.0162 (16)0.0259 (16)0.0266 (17)0.0057 (13)−0.0005 (14)0.0078 (13)
C2B0.0258 (18)0.0229 (16)0.0275 (17)0.0009 (14)0.0081 (14)0.0094 (13)
C3B0.035 (2)0.0235 (16)0.0233 (17)0.0039 (15)0.0067 (15)0.0017 (14)
C4B0.045 (2)0.036 (2)0.0156 (16)−0.0109 (18)0.0105 (16)−0.0029 (14)
C5B0.0175 (18)0.049 (2)0.0271 (18)0.0001 (16)−0.0012 (15)0.0148 (16)
C6B0.0256 (19)0.0402 (19)0.0355 (18)0.0083 (16)0.0083 (15)0.0213 (15)
C7B0.0206 (17)0.0233 (16)0.0252 (16)0.0034 (13)0.0091 (14)0.0083 (13)
O8B0.0236 (12)0.0231 (11)0.0378 (13)0.0065 (10)0.0077 (10)0.0098 (10)
C9B0.0232 (18)0.0199 (16)0.0378 (19)0.0051 (14)0.0061 (15)0.0039 (14)
N10B0.0295 (16)0.0202 (13)0.0422 (16)0.0036 (12)0.0123 (13)0.0152 (12)
C11B0.0239 (18)0.0236 (16)0.0357 (18)0.0079 (14)0.0061 (15)0.0123 (14)
C12B0.0209 (18)0.0268 (17)0.0348 (18)0.0041 (14)0.0104 (15)0.0067 (14)
C13B0.0187 (17)0.0192 (15)0.0307 (17)−0.0035 (13)0.0035 (14)0.0106 (13)
C14B0.0251 (19)0.0276 (17)0.0364 (19)0.0035 (15)0.0041 (15)0.0175 (14)
O14B0.0454 (17)0.0466 (16)0.0330 (14)−0.0042 (14)0.0131 (13)0.0027 (12)
C15B0.071 (4)0.100 (4)0.031 (2)−0.007 (3)0.010 (2)0.007 (3)
C16B0.041 (2)0.034 (2)0.047 (2)0.0061 (18)0.0116 (19)0.0016 (18)

Geometric parameters (Å, °)

Br1A—C4A1.918 (4)Br1B—C4B1.909 (4)
S1A—C11A1.663 (4)S1B—C11B1.662 (4)
C1A—C2A1.497 (5)C1B—C2B1.509 (5)
C1A—C12A1.514 (5)C1B—C12B1.525 (5)
C1A—C13A1.556 (5)C1B—C13B1.528 (5)
C1A—H1A0.9800C1B—H1AA0.9800
C2A—C7A1.390 (5)C2B—C3B1.381 (5)
C2A—C3A1.394 (5)C2B—C7B1.388 (5)
C3A—C4A1.357 (5)C3B—C4B1.377 (5)
C3A—H3A0.9300C3B—H3AA0.9300
C4A—C5A1.374 (6)C4B—C5B1.387 (6)
C5A—C6A1.390 (6)C5B—C6B1.373 (5)
C5A—H5A0.9300C5B—H5AA0.9300
C6A—C7A1.380 (5)C6B—C7B1.387 (5)
C6A—H6A0.9300C6B—H6AA0.9300
C7A—O8A1.400 (4)C7B—O8B1.368 (4)
O8A—C9A1.431 (4)O8B—C9B1.423 (4)
C9A—N10A1.474 (4)C9B—N10B1.468 (5)
C9A—C16A1.509 (5)C9B—C16B1.518 (5)
C9A—C13A1.532 (5)C9B—C13B1.526 (5)
N10A—C11A1.342 (5)N10B—C11B1.332 (5)
N10A—H10A0.8600N10B—H10B0.8600
C11A—C12A1.507 (5)C11B—C12B1.510 (5)
C12A—H12A0.9700C12B—H12C0.9700
C12A—H12B0.9700C12B—H12D0.9700
C13A—C14A1.521 (5)C13B—C14B1.549 (5)
C13A—H13A0.9800C13B—H13B0.9800
C14A—O14A1.186 (4)C14B—O14B1.190 (4)
C14A—C15A1.501 (6)C14B—C15B1.467 (6)
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15F0.9600
C15A—H15C0.9600C15B—H15G0.9600
C16A—H16A0.9600C16B—H16F0.9600
C16A—H16B0.9600C16B—H16G0.9600
C16A—H16C0.9600C16B—H16D0.9600
C2A—C1A—C12A110.6 (3)C2B—C1B—C12B109.8 (3)
C2A—C1A—C13A111.7 (3)C2B—C1B—C13B110.6 (3)
C12A—C1A—C13A106.3 (3)C12B—C1B—C13B106.6 (3)
C2A—C1A—H1A109.4C2B—C1B—H1AA109.9
C12A—C1A—H1A109.4C12B—C1B—H1AA109.9
C13A—C1A—H1A109.4C13B—C1B—H1AA109.9
C7A—C2A—C3A117.5 (3)C3B—C2B—C7B118.2 (3)
C7A—C2A—C1A121.0 (3)C3B—C2B—C1B120.9 (3)
C3A—C2A—C1A121.5 (3)C7B—C2B—C1B120.9 (3)
C4A—C3A—C2A120.2 (3)C4B—C3B—C2B120.7 (4)
C4A—C3A—H3A119.9C4B—C3B—H3AA119.7
C2A—C3A—H3A119.9C2B—C3B—H3AA119.7
C3A—C4A—C5A121.9 (4)C3B—C4B—C5B121.5 (3)
C3A—C4A—Br1A119.5 (3)C3B—C4B—Br1B119.5 (3)
C5A—C4A—Br1A118.5 (3)C5B—C4B—Br1B119.0 (3)
C4A—C5A—C6A119.5 (4)C6B—C5B—C4B117.8 (3)
C4A—C5A—H5A120.2C6B—C5B—H5AA121.1
C6A—C5A—H5A120.2C4B—C5B—H5AA121.1
C7A—C6A—C5A118.2 (4)C5B—C6B—C7B121.2 (4)
C7A—C6A—H6A120.9C5B—C6B—H6AA119.4
C5A—C6A—H6A120.9C7B—C6B—H6AA119.4
C6A—C7A—C2A122.6 (4)O8B—C7B—C6B117.0 (3)
C6A—C7A—O8A116.1 (3)O8B—C7B—C2B122.4 (3)
C2A—C7A—O8A121.3 (3)C6B—C7B—C2B120.6 (3)
C7A—O8A—C9A116.4 (3)C7B—O8B—C9B116.0 (3)
O8A—C9A—N10A108.0 (3)O8B—C9B—N10B110.1 (3)
O8A—C9A—C16A105.3 (3)O8B—C9B—C16B104.4 (3)
N10A—C9A—C16A108.0 (3)N10B—C9B—C16B108.0 (3)
O8A—C9A—C13A110.2 (3)O8B—C9B—C13B110.8 (3)
N10A—C9A—C13A108.6 (3)N10B—C9B—C13B107.2 (3)
C16A—C9A—C13A116.5 (3)C16B—C9B—C13B116.2 (3)
C11A—N10A—C9A128.0 (3)C11B—N10B—C9B129.0 (3)
C11A—N10A—H10A116.0C11B—N10B—H10B115.5
C9A—N10A—H10A116.0C9B—N10B—H10B115.5
N10A—C11A—C12A117.6 (3)N10B—C11B—C12B117.2 (3)
N10A—C11A—S1A121.0 (3)N10B—C11B—S1B121.3 (3)
C12A—C11A—S1A121.4 (3)C12B—C11B—S1B121.5 (3)
C11A—C12A—C1A112.1 (3)C11B—C12B—C1B112.9 (3)
C11A—C12A—H12A109.2C11B—C12B—H12C109.0
C1A—C12A—H12A109.2C1B—C12B—H12C109.0
C11A—C12A—H12B109.2C11B—C12B—H12D109.0
C1A—C12A—H12B109.2C1B—C12B—H12D109.0
H12A—C12A—H12B107.9H12C—C12B—H12D107.8
C14A—C13A—C9A114.5 (3)C9B—C13B—C1B107.0 (3)
C14A—C13A—C1A111.9 (3)C9B—C13B—C14B112.9 (3)
C9A—C13A—C1A105.8 (3)C1B—C13B—C14B113.2 (3)
C14A—C13A—H13A108.1C9B—C13B—H13B107.9
C9A—C13A—H13A108.1C1B—C13B—H13B107.9
C1A—C13A—H13A108.1C14B—C13B—H13B107.9
O14A—C14A—C15A120.4 (4)O14B—C14B—C15B121.6 (4)
O14A—C14A—C13A122.8 (3)O14B—C14B—C13B120.4 (3)
C15A—C14A—C13A116.8 (3)C15B—C14B—C13B118.0 (3)
C14A—C15A—H15A109.5C14B—C15B—H15D109.5
C14A—C15A—H15B109.5C14B—C15B—H15F109.5
H15A—C15A—H15B109.5H15D—C15B—H15F109.5
C14A—C15A—H15C109.5C14B—C15B—H15G109.5
H15A—C15A—H15C109.5H15D—C15B—H15G109.5
H15B—C15A—H15C109.5H15F—C15B—H15G109.5
C9A—C16A—H16A109.5C9B—C16B—H16F109.5
C9A—C16A—H16B109.5C9B—C16B—H16G109.5
H16A—C16A—H16B109.5H16F—C16B—H16G109.5
C9A—C16A—H16C109.5C9B—C16B—H16D109.5
H16A—C16A—H16C109.5H16F—C16B—H16D109.5
H16B—C16A—H16C109.5H16G—C16B—H16D109.5
C12A—C1A—C2A—C7A−98.7 (4)C12B—C1B—C2B—C3B−79.3 (4)
C13A—C1A—C2A—C7A19.4 (4)C13B—C1B—C2B—C3B163.4 (3)
C12A—C1A—C2A—C3A78.7 (4)C12B—C1B—C2B—C7B98.9 (4)
C13A—C1A—C2A—C3A−163.2 (3)C13B—C1B—C2B—C7B−18.5 (4)
C7A—C2A—C3A—C4A−1.6 (5)C7B—C2B—C3B—C4B1.5 (5)
C1A—C2A—C3A—C4A−179.1 (3)C1B—C2B—C3B—C4B179.7 (3)
C2A—C3A—C4A—C5A0.4 (6)C2B—C3B—C4B—C5B−0.1 (5)
C2A—C3A—C4A—Br1A177.7 (3)C2B—C3B—C4B—Br1B−176.8 (3)
C3A—C4A—C5A—C6A−0.3 (6)C3B—C4B—C5B—C6B−0.2 (5)
Br1A—C4A—C5A—C6A−177.6 (3)Br1B—C4B—C5B—C6B176.5 (3)
C4A—C5A—C6A—C7A1.4 (6)C4B—C5B—C6B—C7B−0.9 (5)
C5A—C6A—C7A—C2A−2.7 (6)C5B—C6B—C7B—O8B−179.2 (3)
C5A—C6A—C7A—O8A179.5 (3)C5B—C6B—C7B—C2B2.3 (5)
C3A—C2A—C7A—C6A2.7 (5)C3B—C2B—C7B—O8B179.1 (3)
C1A—C2A—C7A—C6A−179.7 (3)C1B—C2B—C7B—O8B0.9 (5)
C3A—C2A—C7A—O8A−179.6 (3)C3B—C2B—C7B—C6B−2.5 (5)
C1A—C2A—C7A—O8A−2.1 (5)C1B—C2B—C7B—C6B179.3 (3)
C6A—C7A—O8A—C9A−164.1 (3)C6B—C7B—O8B—C9B164.9 (3)
C2A—C7A—O8A—C9A18.1 (4)C2B—C7B—O8B—C9B−16.6 (4)
C7A—O8A—C9A—N10A67.6 (3)C7B—O8B—C9B—N10B−69.1 (3)
C7A—O8A—C9A—C16A−177.2 (3)C7B—O8B—C9B—C16B175.2 (3)
C7A—O8A—C9A—C13A−50.9 (4)C7B—O8B—C9B—C13B49.4 (4)
O8A—C9A—N10A—C11A−98.4 (4)O8B—C9B—N10B—C11B99.0 (4)
C16A—C9A—N10A—C11A148.2 (3)C16B—C9B—N10B—C11B−147.6 (3)
C13A—C9A—N10A—C11A21.1 (4)C13B—C9B—N10B—C11B−21.6 (4)
C9A—N10A—C11A—C12A−4.2 (5)C9B—N10B—C11B—C12B1.5 (5)
C9A—N10A—C11A—S1A175.8 (3)C9B—N10B—C11B—S1B−179.0 (3)
N10A—C11A—C12A—C1A21.9 (4)N10B—C11B—C12B—C1B−16.3 (4)
S1A—C11A—C12A—C1A−158.0 (3)S1B—C11B—C12B—C1B164.1 (2)
C2A—C1A—C12A—C11A66.0 (4)C2B—C1B—C12B—C11B−69.2 (4)
C13A—C1A—C12A—C11A−55.4 (4)C13B—C1B—C12B—C11B50.6 (4)
O8A—C9A—C13A—C14A−58.5 (4)O8B—C9B—C13B—C1B−65.1 (4)
N10A—C9A—C13A—C14A−176.6 (3)N10B—C9B—C13B—C1B55.1 (3)
C16A—C9A—C13A—C14A61.2 (4)C16B—C9B—C13B—C1B176.0 (3)
O8A—C9A—C13A—C1A65.2 (3)O8B—C9B—C13B—C14B60.1 (4)
N10A—C9A—C13A—C1A−52.9 (3)N10B—C9B—C13B—C14B−179.8 (3)
C16A—C9A—C13A—C1A−175.1 (3)C16B—C9B—C13B—C14B−58.9 (4)
C2A—C1A—C13A—C14A76.9 (3)C2B—C1B—C13B—C9B47.7 (4)
C12A—C1A—C13A—C14A−162.5 (3)C12B—C1B—C13B—C9B−71.6 (3)
C2A—C1A—C13A—C9A−48.5 (4)C2B—C1B—C13B—C14B−77.2 (4)
C12A—C1A—C13A—C9A72.2 (3)C12B—C1B—C13B—C14B163.4 (3)
C9A—C13A—C14A—O14A92.4 (4)C9B—C13B—C14B—O14B−89.8 (4)
C1A—C13A—C14A—O14A−28.0 (5)C1B—C13B—C14B—O14B31.9 (5)
C9A—C13A—C14A—C15A−89.3 (4)C9B—C13B—C14B—C15B91.9 (4)
C1A—C13A—C14A—C15A150.3 (3)C1B—C13B—C14B—C15B−146.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N10A—H10A···O14Bi0.862.202.981 (4)150
N10B—H10B···O14Aii0.862.152.960 (4)157

Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2221).

References

  • Biala, J., Czarnocki, Z. & Maurin, J. K. (2002). Tetrahedron Asymmetry, 13, 1021–1023.
  • Bilokin, Y. V., Kovalenko, S. N. & Chernykh, V. P. (1988). Heterocycl. Commun.4, 169–170.
  • Konovalova, I. S., Zaremba, O. V., Kovalenko, S. S., Chernykh, V. P., Kovalenko, S. M., Baumer, V. N. & Shishkin, O. V. (2007). Acta Cryst. E63, o4906.
  • Kovalenko, V. N. & Victorova, A. P. (2005). Compendium of Medicinal Preparation, p. 1920. Kiev: Morion.
  • O’Callaghan, C. N., McMurry, T. B. H., O’Brien, J. E. & Draper, S. M. (1997). J. Chem. Res.312, 2101–2122.
  • Raev, L. D., Frey, W. & Ivanov, I. C. (2004). Synlett, pp. 1584–88.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1991). P3, XDISK and XPREP Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
  • Zaragoza Dorwald, F. (2000). US Patent 6136984 24 10.
  • Zefirov, Yu. V. & Zorky, P. M. (1995). Usp. Khim.64, 446–460.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography