PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o478.
Published online 2009 February 6. doi:  10.1107/S1600536809003997
PMCID: PMC2968571

Dibutyl 2,2′-bipyridine-4,4′-dicarboxyl­ate

Abstract

In the title compound, C20H24N2O4, the mol­ecule lies on a centre of symmetry and is approximately planar (r.m.s. deviation= 0.013 Å for 26 non-H atoms). The carboxyl­ate group is inclined slightly to the neighbouring pyridine ring, forming a dihedral angle of 4.37 (2)°. The mol­ecules form stacks with an inter­planar separation of 3.547 (1) Å.

Related literature

For related structures, see: Stocco et al. (1996 [triangle]); Tynan et al. (2003 [triangle]); Fujihara et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o478-scheme1.jpg

Experimental

Crystal data

  • C20H24N2O4
  • M r = 356.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o478-efi1.jpg
  • a = 7.4183 (9) Å
  • b = 8.2829 (10) Å
  • c = 15.375 (2) Å
  • β = 93.273 (1)°
  • V = 943.2 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 (2) K
  • 0.40 × 0.30 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.966, T max = 0.987
  • 4552 measured reflections
  • 1654 independent reflections
  • 1135 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.115
  • S = 1.03
  • 1654 reflections
  • 119 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003997/bi2343sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003997/bi2343Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (20741008) for financial support.

supplementary crystallographic information

Comment

The crystal structure of 2,2'-bipyridine-4,4'-dicarboxylic acid (H2dcbp) has been reported by Tynan et al. (2003), and a polymeric structure contaning trimethyltin has been reported by Stocco et al. (1996). Herein, we have reacted H2dcbp with tri-n-butyltin chloride. Unexpectedly, we obtained the centrosymmetric title compound only. The C2—N1—C6 bond angle of 117.47 (15)° is similar to those for the free pyridine (Fujihara et al., 2004). The dihedral angle between the pyridine ring and the carboxylate group [C1,O1,O2] is 4.37 (2)°. The bond lengths of C1—O1 and C7—O1 are 1.332 (2) and 1.458 (2) Å, respectively.

Experimental

The reaction was carried out under a nitrogen atmosphere. 2,2'-Bipyridine-4,4'-dicarboxylic acid (1 mmol) and sodium ethoxide (2 mmol) were added to a stirred solution of benzene (30 ml) in a Schlenk flask and stirred for 0.5 h. Tri-n-butyltin chloride (2 mmol) was then added and the reaction mixture was stirred for 12 h at 353 K. The resulting clear solution was evaporated under vacuum. The product was crystallized from dichloromethane to yield colourless blocks (yield 83%. m.p. 435 K). Elemental analysis calculated: C, 67.10; H, 6.79; N, 7.86 %; found: C, 66.92; H, 6.95; N, 7.59 %.

Refinement

H atoms were placed geometrically and treated as riding on their parent atoms with C—H = 0.93 Å (pyridine), 0.97 Å (methylene) or 0.96 Å (methyl), and with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.
Molecular structure showing 30% probability displacement ellipsoids for non-H atoms.

Crystal data

C20H24N2O4F(000) = 380
Mr = 356.41Dx = 1.255 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1638 reflections
a = 7.4183 (9) Åθ = 2.7–26.7°
b = 8.2829 (10) ŵ = 0.09 mm1
c = 15.375 (2) ÅT = 298 K
β = 93.273 (1)°Block, colorless
V = 943.2 (2) Å30.40 × 0.30 × 0.15 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer1654 independent reflections
Radiation source: fine-focus sealed tube1135 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −8→8
Tmin = 0.966, Tmax = 0.987k = −9→8
4552 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0497P)2 + 0.199P] where P = (Fo2 + 2Fc2)/3
1654 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.8610 (2)0.42720 (18)−0.09153 (9)0.0544 (4)
O10.38773 (17)0.20544 (16)0.09033 (7)0.0619 (4)
O20.57083 (19)0.32666 (19)0.19126 (8)0.0755 (5)
C10.5333 (2)0.2904 (2)0.11660 (11)0.0539 (5)
C20.9120 (2)0.45867 (19)−0.00815 (10)0.0451 (4)
C30.8062 (2)0.4163 (2)0.06010 (10)0.0481 (4)
H30.84370.44190.11720.058*
C40.6451 (2)0.3358 (2)0.04254 (10)0.0469 (4)
C50.5929 (2)0.3018 (2)−0.04371 (11)0.0540 (5)
H50.48570.2474−0.05810.065*
C60.7040 (3)0.3510 (2)−0.10735 (11)0.0588 (5)
H60.66740.3297−0.16510.071*
C70.2671 (3)0.1586 (3)0.15756 (12)0.0706 (6)
H7A0.22450.25380.18690.085*
H7B0.33070.09050.20050.085*
C80.1112 (2)0.0691 (2)0.11506 (11)0.0567 (5)
H8A0.1554−0.02720.08730.068*
H8B0.05300.13640.07010.068*
C9−0.0258 (3)0.0211 (3)0.17920 (13)0.0760 (6)
H9A−0.06950.11770.20670.091*
H9B0.0335−0.04510.22440.091*
C10−0.1854 (3)−0.0711 (3)0.13862 (14)0.0768 (6)
H10A−0.2392−0.01030.09070.115*
H10B−0.2729−0.08760.18140.115*
H10C−0.1455−0.17370.11800.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0561 (9)0.0655 (10)0.0412 (8)−0.0060 (8)−0.0003 (7)−0.0020 (7)
O10.0569 (8)0.0808 (9)0.0486 (7)−0.0149 (7)0.0077 (6)0.0001 (6)
O20.0741 (10)0.1073 (12)0.0448 (7)−0.0210 (8)0.0004 (7)−0.0002 (7)
C10.0511 (11)0.0601 (12)0.0500 (11)−0.0004 (9)−0.0006 (9)0.0040 (9)
C20.0488 (9)0.0461 (10)0.0402 (9)0.0038 (8)−0.0008 (7)0.0024 (7)
C30.0500 (10)0.0538 (11)0.0396 (9)0.0026 (8)−0.0048 (8)0.0012 (8)
C40.0467 (10)0.0489 (10)0.0449 (9)0.0053 (8)0.0012 (7)0.0029 (8)
C50.0516 (11)0.0598 (11)0.0499 (10)−0.0042 (9)−0.0028 (8)−0.0042 (9)
C60.0627 (12)0.0733 (13)0.0396 (9)−0.0066 (10)−0.0036 (9)−0.0054 (9)
C70.0682 (13)0.0945 (16)0.0497 (11)−0.0170 (11)0.0091 (10)0.0039 (11)
C80.0573 (11)0.0626 (12)0.0506 (10)−0.0001 (9)0.0064 (9)0.0042 (9)
C90.0731 (14)0.1050 (17)0.0507 (11)−0.0187 (13)0.0097 (10)0.0063 (11)
C100.0684 (14)0.0923 (16)0.0705 (13)−0.0141 (12)0.0096 (11)0.0132 (12)

Geometric parameters (Å, °)

N1—C61.335 (2)C6—H60.930
N1—C21.341 (2)C7—C81.493 (3)
O1—C11.332 (2)C7—H7A0.970
O1—C71.458 (2)C7—H7B0.970
O2—C11.204 (2)C8—C91.509 (3)
C1—C41.495 (2)C8—H8A0.970
C2—C31.391 (2)C8—H8B0.970
C2—C2i1.483 (3)C9—C101.513 (3)
C3—C41.381 (2)C9—H9A0.970
C3—H30.930C9—H9B0.970
C4—C51.389 (2)C10—H10A0.960
C5—C61.377 (2)C10—H10B0.960
C5—H50.930C10—H10C0.960
C6—N1—C2117.47 (15)C8—C7—H7A110.0
C1—O1—C7116.43 (14)O1—C7—H7B110.0
O2—C1—O1124.07 (17)C8—C7—H7B110.0
O2—C1—C4123.74 (17)H7A—C7—H7B108.4
O1—C1—C4112.18 (15)C7—C8—C9112.24 (16)
N1—C2—C3122.14 (15)C7—C8—H8A109.2
N1—C2—C2i116.64 (18)C9—C8—H8A109.2
C3—C2—C2i121.23 (17)C7—C8—H8B109.2
C4—C3—C2119.56 (15)C9—C8—H8B109.2
C4—C3—H3120.2H8A—C8—H8B107.9
C2—C3—H3120.2C8—C9—C10113.81 (17)
C3—C4—C5118.40 (16)C8—C9—H9A108.8
C3—C4—C1118.96 (15)C10—C9—H9A108.8
C5—C4—C1122.64 (16)C8—C9—H9B108.8
C6—C5—C4118.21 (17)C10—C9—H9B108.8
C6—C5—H5120.9H9A—C9—H9B107.7
C4—C5—H5120.9C9—C10—H10A109.5
N1—C6—C5124.20 (16)C9—C10—H10B109.5
N1—C6—H6117.9H10A—C10—H10B109.5
C5—C6—H6117.9C9—C10—H10C109.5
O1—C7—C8108.26 (15)H10A—C10—H10C109.5
O1—C7—H7A110.0H10B—C10—H10C109.5
C7—O1—C1—O21.5 (3)O2—C1—C4—C5−175.64 (18)
C7—O1—C1—C4−178.51 (15)O1—C1—C4—C54.4 (2)
C6—N1—C2—C3−0.8 (3)C3—C4—C5—C6−0.4 (3)
C6—N1—C2—C2i179.14 (18)C1—C4—C5—C6178.98 (16)
N1—C2—C3—C41.5 (3)C2—N1—C6—C5−0.6 (3)
C2i—C2—C3—C4−178.40 (18)C4—C5—C6—N11.2 (3)
C2—C3—C4—C5−0.9 (2)C1—O1—C7—C8178.49 (16)
C2—C3—C4—C1179.76 (15)O1—C7—C8—C9−177.70 (17)
O2—C1—C4—C33.7 (3)C7—C8—C9—C10−179.62 (19)
O1—C1—C4—C3−176.26 (15)

Symmetry codes: (i) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2343).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fujihara, T., Kobayashi, A. & Nagasawa, A. (2004). Acta Cryst. E60, o353–o355.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stocco, G., Guli, G., Girasolo, M. A., Bruno, G., Nicolò, F. & Scopelliti, R. (1996). Acta Cryst. C52, 829–832.
  • Tynan, E., Jensen, P., Kruger, P. E., Lees, A. C. & Nieuwenhuyzen, M. (2003). Dalton Trans. pp. 1223–1228.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography