PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m285.
Published online 2009 February 18. doi:  10.1107/S1600536809004450
PMCID: PMC2968569

catena-Poly[[diaqua­bis(diphenyl­acetato)­zinc(II)]-μ-4,4′-bipyridine]

Abstract

In the title compound, [Zn(C14H11O2)2(C10H8N2)(H2O)2]n, the ZnII ion lies on a crystallographic inversion center and is in a slightly distorted octahedral coordination enviroment. 4,4′-Bipyridine ligands act as bridging ligands, connecting ZnII ions into a chain along the b-axis direction. In the crystal structure, these chains are linked by inter­molecular O—H(...)O hydrogen bonds to form a two-dimensional network parallel to the ab plane.

Related literature

For background information, see: Janiak (2003 [triangle]); Moulton & Zaworotko (2001 [triangle]); Brammer (2004 [triangle]). For the role of weak noncovalent inter­actions in crystalline architectures, see: Hosseini (2005 [triangle]); Nishio (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m285-scheme1.jpg

Experimental

Crystal data

  • [Zn(C14H11O2)2(C10H8N2)(H2O)2]
  • M r = 680.04
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m285-efi1.jpg
  • a = 5.7536 (13) Å
  • b = 11.882 (3) Å
  • c = 12.229 (3) Å
  • α = 98.522 (4)°
  • β = 103.273 (5)°
  • γ = 103.450 (4)°
  • V = 773.2 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.85 mm−1
  • T = 291 K
  • 0.30 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.785, T max = 0.823
  • 3891 measured reflections
  • 2679 independent reflections
  • 2234 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.135
  • S = 1.02
  • 2679 reflections
  • 214 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004450/lh2759sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004450/lh2759Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Nanjing Xiaozhuang College of China for financial support (grant No. 2007NXY31).

supplementary crystallographic information

Comment

During the past decade, the design of new metal-organic supramolecular solids has attracted attention in the fields of coordination chemistry and crystal engineering, for the sake of developing desired crystalline materials with potential functionality (Moulton & Zaworotko, 2001; Janiak , 2003). Furthermore, it has been realised that weak noncovalent interactions such as hydrogen bonds, aromatic stacking, and van der Waals forces (Hosseini, 2005; Nishio, 2004) are crucial in the direction of such crystalline architectures. Hitherto, a variety of organic connectors containing pyridyl and/or carboxylate groups (Brammer, 2004) have been widely used to construct metal-organic supramolecular frameworks. Herein we report the crystal structure of the title compound (1).

The asymmetric unit of (I) is illustrated in Fig. 1. The structure of (I) is a one-dimensional chain (Fig. 2), in which the ZnII ions are coordinated by two O atoms from two monodentate carboxylate groups of two bis(diphenylacetato) ligands, two N atoms of two bridging 4,4'-bipyridine ligands and two O atoms from two water molecules. The ZnII ion is in a slightly distorted octahedral coordination environment. In the crystal structure, these one-dimensional chains are linked via intermolecular O—H···O hydrogen bonds to form a two-dimensional network.

Experimental

Soild ZnCl2(136 mg, 1 mmol), 4,4'-bipyridine (1 mmol, 0.156 g) and diphenylacetic acid (212 mg, 1 mmol) in water (8 ml) was placed in a Teflon-lined stainless-steel Parr bomb that was heated at 433 K for 48 h. Colorless block crystals were collected after the bomb was subsequently allowed to cool to room temperature.

Refinement

The C-bound H atoms were placed to the bonded parent atoms in geometrically idealized positions (C—H = 0.93, and 0.98 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C). The O-bound H atoms were located in difference Fourier maps and refined as riding in their as-found positions but with O—H = 0.96 Å and with Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
The asymmetric unit of (I), showing displacement ellipsoids at the 30% probability level.
Fig. 2.
Part of the one-dimensional chain structure of (I).

Crystal data

[Zn(C14H11O2)2(C10H8N2)(H2O)2]Z = 1
Mr = 680.04F(000) = 354
Triclinic, P1Dx = 1.460 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7536 (13) ÅCell parameters from 924 reflections
b = 11.882 (3) Åθ = 2.2–20.2°
c = 12.229 (3) ŵ = 0.85 mm1
α = 98.522 (4)°T = 291 K
β = 103.273 (5)°Block, colorless
γ = 103.450 (4)°0.30 × 0.26 × 0.24 mm
V = 773.2 (3) Å3

Data collection

Bruker SMART CCD diffractometer2679 independent reflections
Radiation source: fine-focus sealed tube2234 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −6→6
Tmin = 0.785, Tmax = 0.823k = −12→14
3891 measured reflectionsl = −14→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.05P)2 + 1.22P] where P = (Fo2 + 2Fc2)/3
2679 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.5242 (9)0.7816 (4)−0.0135 (4)0.0552 (12)
H10.63900.74420.01970.066*
C20.4992 (9)0.7953 (4)−0.1250 (4)0.0575 (12)
H20.59690.7669−0.16720.069*
C30.3272 (9)0.8519 (4)−0.1754 (4)0.0540 (11)
H30.31060.8614−0.25070.065*
C40.1819 (9)0.8936 (4)−0.1118 (4)0.0592 (13)
H40.06790.9317−0.14410.071*
C50.2073 (8)0.8782 (4)0.0000 (4)0.0481 (11)
H50.10760.90520.04180.058*
C60.3773 (8)0.8238 (4)0.0501 (4)0.0544 (12)
C70.3955 (8)0.8080 (4)0.1714 (4)0.0528 (12)
H70.27200.84230.19630.063*
C80.3306 (8)0.6802 (4)0.1832 (4)0.0550 (12)
C90.0736 (9)0.6218 (4)0.1441 (4)0.0588 (13)
H9−0.04500.66150.12150.071*
C100.0081 (9)0.4974 (4)0.1416 (4)0.0575 (13)
H10−0.15920.45550.11630.069*
C110.1787 (9)0.4365 (5)0.1745 (4)0.0557 (12)
H110.13030.35520.16950.067*
C120.4204 (8)0.4999 (4)0.2145 (4)0.0527 (11)
H120.53870.46090.23930.063*
C130.4981 (10)0.6189 (4)0.2200 (4)0.0552 (12)
H130.66620.65880.24890.066*
C140.6538 (8)0.8770 (4)0.2592 (4)0.0463 (11)
C151.1601 (9)0.7492 (4)0.4541 (4)0.0494 (11)
H151.26390.79350.41840.059*
C161.1620 (8)0.6347 (4)0.4540 (4)0.0478 (11)
H161.27280.60450.42220.057*
C171.0046 (9)0.5634 (4)0.4995 (4)0.0510 (11)
C180.8504 (9)0.6187 (4)0.5508 (4)0.0489 (11)
H180.74240.57550.58530.059*
C190.8580 (9)0.7341 (4)0.5501 (4)0.0476 (11)
H190.75150.76690.58290.057*
N11.0118 (8)0.8015 (3)0.5046 (4)0.0591 (10)
O10.6471 (6)0.9293 (3)0.3557 (3)0.0600 (9)
O20.8431 (5)0.8730 (3)0.2284 (3)0.0516 (8)
O31.2454 (6)1.0195 (3)0.3733 (3)0.0608 (9)
H3B1.15390.96960.29940.073*
H3C1.39250.99610.40240.073*
Zn11.00001.00000.50000.0473 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.053 (3)0.063 (3)0.046 (3)0.020 (2)0.004 (2)0.010 (2)
C20.053 (3)0.059 (3)0.055 (3)0.003 (2)0.026 (2)0.001 (2)
C30.051 (3)0.056 (3)0.049 (3)0.008 (2)0.010 (2)0.011 (2)
C40.053 (3)0.051 (3)0.065 (3)0.011 (2)−0.007 (2)0.028 (2)
C50.047 (2)0.046 (2)0.055 (3)0.024 (2)0.008 (2)0.012 (2)
C60.046 (3)0.052 (3)0.061 (3)0.014 (2)0.012 (2)0.004 (2)
C70.044 (2)0.061 (3)0.045 (2)0.018 (2)0.001 (2)0.000 (2)
C80.042 (2)0.051 (3)0.056 (3)0.002 (2)0.006 (2)−0.008 (2)
C90.062 (3)0.057 (3)0.050 (3)0.000 (2)0.016 (2)0.013 (2)
C100.053 (3)0.059 (3)0.048 (3)−0.013 (2)0.024 (2)0.005 (2)
C110.060 (3)0.063 (3)0.048 (3)0.018 (2)0.028 (2)0.001 (2)
C120.049 (3)0.049 (3)0.065 (3)0.016 (2)0.018 (2)0.020 (2)
C130.063 (3)0.057 (3)0.051 (3)0.019 (2)0.019 (2)0.019 (2)
C140.039 (2)0.045 (2)0.047 (2)0.0136 (18)0.0069 (19)−0.0099 (19)
C150.061 (3)0.047 (3)0.058 (3)0.030 (2)0.027 (2)0.026 (2)
C160.051 (3)0.057 (3)0.054 (3)0.032 (2)0.025 (2)0.026 (2)
C170.059 (3)0.043 (2)0.056 (3)0.025 (2)0.015 (2)0.011 (2)
C180.054 (3)0.058 (3)0.049 (2)0.030 (2)0.019 (2)0.021 (2)
C190.056 (3)0.041 (2)0.050 (3)0.023 (2)0.010 (2)0.017 (2)
N10.065 (3)0.044 (2)0.064 (3)0.0170 (19)0.011 (2)0.0041 (19)
O10.0470 (18)0.067 (2)0.057 (2)0.0143 (16)0.0080 (15)−0.0010 (16)
O20.0419 (17)0.0550 (19)0.0550 (18)0.0178 (14)0.0141 (14)−0.0054 (14)
O30.058 (2)0.056 (2)0.061 (2)0.0140 (16)0.0108 (16)0.0031 (16)
Zn10.0440 (4)0.0420 (4)0.0436 (4)0.0021 (3)0.0025 (3)0.0020 (3)

Geometric parameters (Å, °)

C1—C21.377 (6)C12—H120.9300
C1—C61.398 (6)C13—H130.9300
C1—H10.9300C14—O21.240 (5)
C2—C31.401 (7)C14—O11.263 (5)
C2—H20.9300C15—C161.363 (6)
C3—C41.388 (7)C15—N11.368 (6)
C3—H30.9300C15—H150.9300
C4—C51.385 (6)C16—C171.365 (6)
C4—H40.9300C16—H160.9300
C5—C61.374 (6)C17—C181.420 (6)
C5—H50.9300C17—C17i1.497 (8)
C6—C71.505 (7)C18—C191.362 (6)
C7—C81.514 (7)C18—H180.9300
C7—C141.572 (6)C19—N11.328 (6)
C7—H70.9800C19—H190.9300
C8—C131.373 (7)N1—Zn12.384 (4)
C8—C91.413 (6)O1—Zn12.250 (3)
C9—C101.432 (7)O3—Zn12.326 (3)
C9—H90.9300O3—H3B0.9600
C10—C111.372 (7)O3—H3C0.9600
C10—H100.9300Zn1—O1ii2.250 (3)
C11—C121.354 (7)Zn1—O3ii2.326 (3)
C11—H110.9300Zn1—N1ii2.384 (4)
C12—C131.367 (6)
C2—C1—C6120.1 (5)C8—C13—H13119.7
C2—C1—H1120.0O2—C14—O1126.4 (4)
C6—C1—H1120.0O2—C14—C7117.4 (4)
C1—C2—C3120.3 (5)O1—C14—C7116.2 (4)
C1—C2—H2119.9C16—C15—N1122.6 (4)
C3—C2—H2119.9C16—C15—H15118.7
C4—C3—C2119.3 (4)N1—C15—H15118.7
C4—C3—H3120.3C15—C16—C17121.4 (4)
C2—C3—H3120.3C15—C16—H16119.3
C5—C4—C3119.8 (4)C17—C16—H16119.3
C5—C4—H4120.1C16—C17—C18115.3 (4)
C3—C4—H4120.1C16—C17—C17i123.8 (5)
C6—C5—C4121.1 (5)C18—C17—C17i120.9 (5)
C6—C5—H5119.4C19—C18—C17121.1 (4)
C4—C5—H5119.4C19—C18—H18119.4
C5—C6—C1119.4 (5)C17—C18—H18119.4
C5—C6—C7119.0 (4)N1—C19—C18122.5 (4)
C1—C6—C7121.6 (4)N1—C19—H19118.8
C6—C7—C8114.4 (4)C18—C19—H19118.8
C6—C7—C14113.9 (4)C19—N1—C15117.1 (4)
C8—C7—C14109.1 (4)C19—N1—Zn1120.2 (3)
C6—C7—H7106.3C15—N1—Zn1122.6 (3)
C8—C7—H7106.3C14—O1—Zn1119.4 (3)
C14—C7—H7106.3Zn1—O3—H3B109.4
C13—C8—C9120.2 (5)Zn1—O3—H3C109.2
C13—C8—C7125.6 (4)H3B—O3—H3C109.5
C9—C8—C7114.0 (4)O1—Zn1—O1ii180.000 (1)
C8—C9—C10115.4 (5)O1—Zn1—O392.45 (12)
C8—C9—H9122.3O1ii—Zn1—O387.55 (12)
C10—C9—H9122.3O1—Zn1—O3ii87.55 (12)
C11—C10—C9123.6 (5)O1ii—Zn1—O3ii92.45 (12)
C11—C10—H10118.2O3—Zn1—O3ii180.000 (1)
C9—C10—H10118.2O1—Zn1—N1ii90.93 (13)
C12—C11—C10117.1 (5)O1ii—Zn1—N1ii89.07 (13)
C12—C11—H11121.4O3—Zn1—N1ii86.86 (13)
C10—C11—H11121.4O3ii—Zn1—N1ii93.14 (13)
C11—C12—C13122.8 (5)O1—Zn1—N189.07 (13)
C11—C12—H12118.6O1ii—Zn1—N190.93 (13)
C13—C12—H12118.6O3—Zn1—N193.14 (13)
C12—C13—C8120.7 (5)O3ii—Zn1—N186.86 (13)
C12—C13—H13119.7N1ii—Zn1—N1180.000 (2)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3B···O20.961.822.618 (5)139
O3—H3C···O1iii0.961.972.802 (5)143

Symmetry codes: (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2759).

References

  • Brammer, L. (2004). Chem. Soc. Rev.33, 476–489. [PubMed]
  • Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hosseini, M. W. (2005). Acc. Chem. Res.38, 313–323. [PubMed]
  • Janiak, C. (2003). Dalton Trans. pp. 2781–2804.
  • Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [PubMed]
  • Nishio, M. (2004). CrystEngComm, 6, 130–158.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography