PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m326–m327.
Published online 2009 February 25. doi:  10.1107/S1600536809006345
PMCID: PMC2968564

Diaqua­bis(N,N-diethyl­nicotinamide-κN 1)bis­(4-formyl­benzoato-κO)nickel(II)

Abstract

In the title centrosymmetric mononuclear NiII compound, [Ni(C8H5O3)2(C10H14N2O)2(H2O)2], the central NiII atom is coordinated by two O atoms from two 4-formyl­benzoate (FOB) ligands, two O atoms from two water mol­ecules and two N atoms from two diethyl­nicotinamide (DENA) ligands. The coordination geometry is slightly distorted octa­hedral, with four O atoms in the equatorial plane and two N atoms in axial positions. Intra­molecular O—H(...)O hydrogen bonds are observed. In the crystal structure, mol­ecules are linked into chains along the a axis by inter­molecular O—H(...)O hydrogen bonds. The structure is further stabilized by π–π inter­actions between the pyridine rings of DENA units, with a centroid–centroid distance of 3.668 (2) Å.

Related literature

For general background, see: Antolini et al. (1982 [triangle]); Bigoli et al. (1972 [triangle]); Nadzhafov et al. (1981 [triangle]); Shnulin et al. (1981 [triangle]). For related structures, see: Hökelek et al. (1995 [triangle], 1997 [triangle], 2007 [triangle], 2008 [triangle]); Hökelek & Necefouglu (1996 [triangle], 1997 [triangle]); Hökelek & Necefoğlu (2007 [triangle]); Sertçelik et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m326-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H5O3)2(C10H14N2O)2(H2O)2]
  • M r = 749.43
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m326-efi1.jpg
  • a = 7.2909 (2) Å
  • b = 8.6883 (3) Å
  • c = 15.9037 (4) Å
  • α = 85.034 (5)°
  • β = 78.576 (4)°
  • γ = 67.594 (3)°
  • V = 912.85 (5) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.59 mm−1
  • T = 294 K
  • 0.35 × 0.20 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID-S diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.870, T max = 0.918
  • 19676 measured reflections
  • 3740 independent reflections
  • 2797 reflections with I > 2σ(I)
  • R int = 0.098

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.122
  • S = 1.04
  • 3740 reflections
  • 242 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006345/ci2769sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006345/ci2769Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

supplementary crystallographic information

Comment

The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972). The structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). The structure determination of the title compound, a nickel complex with two formylbenzoate (FOB), two diethylnicotinamide (DENA) ligands and two water molecules, was undertaken in order to determine the properties of the ligands and also to compare the results obtained with those reported previously.

The title compound is a monomeric complex, with the NiII atom on a centre of symmetry (Fig. 1). All ligands are monodentate. The four O atoms (O1, O5, and the symmetry-related atoms, O1', O5') lie in the equatorial plane around the Ni1 atom forming a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the DENA ligands (N1, N1') in the axial positions (Table 1 and Fig. 1). An intramolecular O—H···O hydrogen bond (Table 2) results in the formation of a six-membered ring Ni1/O1/O2/O5/C1/H52 ring.

The near equality of the C1—O1 [1.263 (4) Å] and C1—O2 [1.249 (4) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.262 (3) and 1.249 (3) Å in [Mn(DENA)2(C8H5O3)2(H2O)2] (Sertçelik et al., 2009), 1.256 (6) and 1.245 (6) Å in [Mn(DENA)2(C7H4ClO2)2(H2O)2] (Hökelek et al., 2008), 1.265 (6) and 1.275 (6) Å in [Mn(C9H10NO2)2(H2O)4].2H2O (Hökelek & Necefoğlu, 2007), 1.260 (4) and 1.252 (4) Å in [Zn(DENA)2(C7H4FO2)2(H2O)2] (Hökelek et al., 2007), 1.259 (9) and 1.273 (9) Å in Cu2(DENA)2(C6H5COO)4 (Hökelek et al., 1995), 1.279 (4) and 1.246 (4) Å in [Zn2(DENA)2(C7H5O3)4].2H2O (Hökelek & Necefoğlu, 1996), 1.251 (6) and 1.254 (7) Å in [Co(DENA)2(C7H5O3)2(H2O)2] (Hökelek & Necefoğlu, 1997), 1.278 (3) and 1.246 (3) Å in [Cu(DENA)2(C7H4NO4)2(H2O)2] (Hökelek et al., 1997). The average Ni—O bond length in the title complex is 2.077 (3) Å and the Ni1 atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.732 (1) Å. The dihedral angle between the planar carboxylate group and the C2-C7 benzene ring is 4.3 (3)°.

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into infinite chains (Fig. 2) along the a axis, which may be effective in the stabilization of the structure. A π-π contact is also observed between the pyridine rings (N1/C9—C13, centroid Cg1) of DENA units, with a Cg1···Cg1i [symmetry code: (i) 1-x, -1-y, -z] distance of 3.668 (2) Å.

Experimental

The title compound was prepared by the reaction of Ni(SO4)H2O (1.73 g, 10 mmol) in H2O (50 ml) and DENA (3.56 g, 20 mmol) in H2O (15 ml) with sodium 4-formylbenzoate (3.44 g, 20 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving green single crystals.

Refinement

H atoms of water molecule were located in a difference Fourier map and refined isotropically, with O–H and H···H distances restrained to 0.84 (1) Å and 1.37 (2) Å, respectively. The remaining H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Primed atoms are generated by the symmetry operator (-x, -y, -z).
Fig. 2.
A partial packing diagram of the title compound viewed down the a axis, showing hydrogen bonds (dotted lines) linking the molecules into chains. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

[Ni(C8H5O3)2(C10H14N2O)2(H2O)2]Z = 1
Mr = 749.43F(000) = 394
Triclinic, P1Dx = 1.363 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2909 (2) ÅCell parameters from 4227 reflections
b = 8.6883 (3) Åθ = 2.5–26.4°
c = 15.9037 (4) ŵ = 0.59 mm1
α = 85.034 (5)°T = 294 K
β = 78.576 (4)°Prism, green
γ = 67.594 (3)°0.35 × 0.20 × 0.15 mm
V = 912.85 (5) Å3

Data collection

Rigaku R-AXIS RAPID-S diffractometer3740 independent reflections
Radiation source: fine-focus sealed tube2797 reflections with I > 2σ(I)
graphiteRint = 0.098
ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan (Blessing, 1995)h = −9→9
Tmin = 0.870, Tmax = 0.918k = −10→10
19676 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0235P)2 + 0.8051P] where P = (Fo2 + 2Fc2)/3
3740 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 0.50 e Å3
3 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O5−0.2711 (4)−0.0197 (4)0.06069 (16)0.0494 (6)
H52−0.284 (6)0.028 (4)0.1070 (13)0.069 (14)*
H51−0.260 (6)−0.1180 (19)0.074 (2)0.072 (15)*
Ni10.00000.00000.00000.03948 (19)
O10.0244 (3)0.1122 (3)0.10462 (14)0.0465 (6)
O2−0.2567 (4)0.1272 (3)0.19683 (16)0.0569 (7)
N10.1775 (4)−0.2306 (3)0.04762 (17)0.0427 (7)
O40.7320 (4)−0.3311 (3)0.12366 (16)0.0579 (7)
C1−0.0812 (5)0.1254 (4)0.1788 (2)0.0430 (8)
C120.4355 (5)−0.3815 (4)0.1297 (2)0.0423 (8)
C130.3191 (5)−0.2372 (4)0.0918 (2)0.0433 (8)
H130.3401−0.13980.09740.052*
C70.2092 (5)0.1420 (4)0.2370 (2)0.0467 (8)
H70.27870.13840.18100.056*
C90.1550 (5)−0.3738 (4)0.0380 (2)0.0467 (8)
H90.0593−0.37220.00670.056*
C20.0178 (5)0.1355 (4)0.2521 (2)0.0420 (8)
N20.6115 (5)−0.4182 (4)0.2506 (2)0.0617 (9)
C3−0.0823 (5)0.1368 (4)0.3360 (2)0.0502 (9)
H3−0.20930.13040.34720.060*
C110.4075 (5)−0.5277 (4)0.1196 (2)0.0477 (9)
H110.4824−0.62690.14450.057*
O30.4414 (5)0.1916 (5)0.4558 (2)0.0974 (11)
C140.6023 (5)−0.3740 (4)0.1690 (2)0.0474 (9)
C40.0071 (6)0.1476 (5)0.4030 (2)0.0559 (10)
H4−0.06060.14830.45910.067*
C60.2976 (5)0.1538 (5)0.3041 (2)0.0523 (9)
H60.42510.15920.29320.063*
C100.2674 (5)−0.5233 (4)0.0723 (2)0.0505 (9)
H100.2483−0.62020.06350.061*
C50.1956 (6)0.1575 (5)0.3878 (2)0.0533 (9)
C170.7912 (7)−0.4225 (6)0.2841 (3)0.0746 (13)
H17A0.8047−0.49120.33560.090*
H17B0.9119−0.47230.24170.090*
C150.4604 (7)−0.4666 (6)0.3106 (3)0.0740 (13)
H15A0.3689−0.48230.27850.089*
H15B0.5285−0.57250.33730.089*
C160.3433 (9)−0.3450 (9)0.3777 (4)0.137 (3)
H16A0.2414−0.37970.41190.206*
H16B0.2804−0.23830.35180.206*
H16C0.4309−0.33670.41340.206*
C80.2863 (7)0.1717 (6)0.4606 (3)0.0767 (13)
H80.21590.16450.51540.092*
C180.7725 (8)−0.2525 (6)0.3038 (3)0.0961 (17)
H18A0.8938−0.25820.32120.144*
H18B0.6600−0.20680.34940.144*
H18C0.7518−0.18270.25370.144*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O50.0454 (14)0.0569 (17)0.0485 (16)−0.0216 (13)−0.0106 (12)0.0032 (14)
Ni10.0359 (3)0.0445 (4)0.0398 (4)−0.0152 (3)−0.0123 (3)0.0044 (3)
O10.0473 (14)0.0542 (15)0.0420 (14)−0.0207 (12)−0.0141 (11)0.0019 (11)
O20.0440 (14)0.0733 (18)0.0544 (15)−0.0224 (13)−0.0070 (12)−0.0074 (13)
N10.0374 (15)0.0452 (17)0.0475 (17)−0.0160 (13)−0.0122 (12)0.0030 (13)
O40.0500 (15)0.0703 (18)0.0611 (16)−0.0315 (14)−0.0132 (13)0.0098 (14)
C10.0424 (19)0.0387 (19)0.046 (2)−0.0103 (15)−0.0139 (16)0.0022 (15)
C120.0368 (18)0.050 (2)0.0411 (19)−0.0174 (16)−0.0105 (15)0.0058 (16)
C130.0418 (18)0.0436 (19)0.047 (2)−0.0158 (16)−0.0144 (16)0.0009 (16)
C70.048 (2)0.053 (2)0.0386 (19)−0.0192 (17)−0.0045 (15)−0.0002 (16)
C90.046 (2)0.054 (2)0.046 (2)−0.0236 (18)−0.0159 (16)0.0037 (17)
C20.0421 (19)0.0426 (19)0.0410 (19)−0.0144 (16)−0.0106 (15)0.0013 (15)
N20.061 (2)0.080 (2)0.057 (2)−0.0371 (18)−0.0232 (16)0.0143 (18)
C30.044 (2)0.057 (2)0.048 (2)−0.0182 (18)−0.0081 (16)0.0019 (18)
C110.0444 (19)0.046 (2)0.051 (2)−0.0137 (17)−0.0145 (16)0.0106 (17)
O30.101 (3)0.155 (3)0.069 (2)−0.076 (3)−0.0352 (19)0.005 (2)
C140.044 (2)0.050 (2)0.050 (2)−0.0176 (17)−0.0140 (17)0.0077 (17)
C40.062 (2)0.066 (3)0.038 (2)−0.024 (2)−0.0041 (17)−0.0028 (18)
C60.051 (2)0.061 (2)0.051 (2)−0.0257 (19)−0.0137 (17)−0.0005 (18)
C100.054 (2)0.046 (2)0.057 (2)−0.0224 (18)−0.0179 (18)0.0045 (17)
C50.058 (2)0.062 (2)0.044 (2)−0.025 (2)−0.0139 (18)0.0018 (18)
C170.081 (3)0.078 (3)0.076 (3)−0.033 (3)−0.038 (2)0.014 (2)
C150.081 (3)0.092 (3)0.057 (3)−0.040 (3)−0.019 (2)0.009 (2)
C160.102 (5)0.176 (7)0.131 (5)−0.059 (5)0.026 (4)−0.069 (5)
C80.081 (3)0.106 (4)0.054 (3)−0.042 (3)−0.024 (2)−0.003 (2)
C180.128 (5)0.085 (4)0.094 (4)−0.046 (3)−0.049 (3)−0.002 (3)

Geometric parameters (Å, °)

O5—Ni12.084 (2)N2—C171.496 (5)
O5—H520.85 (3)C3—C41.380 (5)
O5—H510.84 (2)C3—H30.93
Ni1—O12.069 (2)C11—C101.371 (5)
Ni1—O1i2.069 (2)C11—H110.93
Ni1—O5i2.084 (2)O3—C81.194 (5)
Ni1—N12.100 (3)C4—C51.382 (5)
Ni1—N1i2.100 (3)C4—H40.93
O1—C11.263 (4)C6—C51.386 (5)
O2—C11.249 (4)C6—H60.93
N1—C91.340 (4)C10—H100.93
N1—C131.341 (4)C5—C81.478 (5)
O4—C141.227 (4)C17—C181.486 (6)
C1—C21.511 (4)C17—H17A0.97
C12—C131.384 (4)C17—H17B0.97
C12—C111.389 (5)C15—C161.459 (6)
C12—C141.498 (4)C15—H15A0.97
C13—H130.93C15—H15B0.97
C7—C61.380 (4)C16—H16A0.96
C7—C21.391 (4)C16—H16B0.96
C7—H70.93C16—H16C0.96
C9—C101.379 (5)C8—H80.93
C9—H90.93C18—H18A0.96
C2—C31.388 (5)C18—H18B0.96
N2—C141.328 (4)C18—H18C0.96
N2—C151.473 (5)
Ni1—O5—H5298 (3)C10—C11—C12118.8 (3)
Ni1—O5—H51113 (3)C10—C11—H11120.6
H52—O5—H51106 (2)C12—C11—H11120.6
O1—Ni1—O1i180.00 (6)O4—C14—N2121.3 (3)
O1—Ni1—O592.91 (10)O4—C14—C12118.6 (3)
O1i—Ni1—O587.09 (10)N2—C14—C12120.1 (3)
O1—Ni1—O5i87.09 (10)C3—C4—C5121.0 (3)
O1i—Ni1—O5i92.91 (10)C3—C4—H4119.5
O5—Ni1—O5i180.00 (19)C5—C4—H4119.5
O1—Ni1—N188.53 (10)C7—C6—C5119.8 (3)
O1i—Ni1—N191.47 (10)C7—C6—H6120.1
O5—Ni1—N193.76 (10)C5—C6—H6120.1
O5i—Ni1—N186.24 (10)C11—C10—C9119.3 (3)
O1—Ni1—N1i91.47 (10)C11—C10—H10120.3
O1i—Ni1—N1i88.53 (10)C9—C10—H10120.3
O5—Ni1—N1i86.24 (10)C4—C5—C6119.4 (3)
O5i—Ni1—N1i93.76 (10)C4—C5—C8119.8 (4)
N1—Ni1—N1i180.0 (2)C6—C5—C8120.8 (4)
C1—O1—Ni1126.8 (2)C18—C17—N2111.3 (4)
C9—N1—C13117.2 (3)C18—C17—H17A109.4
C9—N1—Ni1123.6 (2)N2—C17—H17A109.4
C13—N1—Ni1119.3 (2)C18—C17—H17B109.4
O2—C1—O1125.9 (3)N2—C17—H17B109.4
O2—C1—C2117.7 (3)H17A—C17—H17B108.0
O1—C1—C2116.3 (3)C16—C15—N2113.6 (4)
C13—C12—C11118.2 (3)C16—C15—H15A108.8
C13—C12—C14117.4 (3)N2—C15—H15A108.8
C11—C12—C14123.8 (3)C16—C15—H15B108.8
N1—C13—C12123.4 (3)N2—C15—H15B108.8
N1—C13—H13118.3H15A—C15—H15B107.7
C12—C13—H13118.3C15—C16—H16A109.5
C6—C7—C2120.9 (3)C15—C16—H16B109.5
C6—C7—H7119.6H16A—C16—H16B109.5
C2—C7—H7119.6C15—C16—H16C109.5
N1—C9—C10123.0 (3)H16A—C16—H16C109.5
N1—C9—H9118.5H16B—C16—H16C109.5
C10—C9—H9118.5O3—C8—C5126.2 (4)
C3—C2—C7119.0 (3)O3—C8—H8116.9
C3—C2—C1119.8 (3)C5—C8—H8116.9
C7—C2—C1121.2 (3)C17—C18—H18A109.5
C14—N2—C15125.2 (3)C17—C18—H18B109.5
C14—N2—C17117.6 (3)H18A—C18—H18B109.5
C15—N2—C17117.1 (3)C17—C18—H18C109.5
C4—C3—C2119.9 (3)H18A—C18—H18C109.5
C4—C3—H3120.1H18B—C18—H18C109.5
C2—C3—H3120.1
O5—Ni1—O1—C110.8 (3)C7—C2—C3—C41.2 (5)
O5i—Ni1—O1—C1−169.2 (3)C1—C2—C3—C4−179.4 (3)
N1—Ni1—O1—C1−82.9 (3)C13—C12—C11—C100.4 (5)
N1i—Ni1—O1—C197.1 (3)C14—C12—C11—C10−171.1 (3)
O1—Ni1—N1—C9146.8 (3)C15—N2—C14—O4178.1 (4)
O1i—Ni1—N1—C9−33.2 (3)C17—N2—C14—O4−3.2 (6)
O5—Ni1—N1—C954.0 (3)C15—N2—C14—C12−4.0 (6)
O5i—Ni1—N1—C9−126.0 (3)C17—N2—C14—C12174.7 (3)
O1—Ni1—N1—C13−31.7 (2)C13—C12—C14—O4−57.3 (5)
O1i—Ni1—N1—C13148.3 (2)C11—C12—C14—O4114.3 (4)
O5—Ni1—N1—C13−124.5 (3)C13—C12—C14—N2124.7 (4)
O5i—Ni1—N1—C1355.5 (3)C11—C12—C14—N2−63.7 (5)
Ni1—O1—C1—O2−26.2 (5)C2—C3—C4—C50.1 (6)
Ni1—O1—C1—C2152.2 (2)C2—C7—C6—C50.7 (5)
C9—N1—C13—C12−2.3 (5)C12—C11—C10—C9−1.6 (5)
Ni1—N1—C13—C12176.3 (2)N1—C9—C10—C110.8 (6)
C11—C12—C13—N11.6 (5)C3—C4—C5—C6−1.0 (6)
C14—C12—C13—N1173.7 (3)C3—C4—C5—C8179.0 (4)
C13—N1—C9—C101.1 (5)C7—C6—C5—C40.7 (6)
Ni1—N1—C9—C10−177.5 (3)C7—C6—C5—C8−179.4 (4)
C6—C7—C2—C3−1.6 (5)C14—N2—C17—C1878.7 (5)
C6—C7—C2—C1179.0 (3)C15—N2—C17—C18−102.4 (5)
O2—C1—C2—C33.7 (5)C14—N2—C15—C16−110.3 (5)
O1—C1—C2—C3−174.9 (3)C17—N2—C15—C1671.0 (6)
O2—C1—C2—C7−177.0 (3)C4—C5—C8—O3−175.0 (5)
O1—C1—C2—C74.5 (5)C6—C5—C8—O35.1 (7)

Symmetry codes: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H51···O4ii0.84 (2)1.97 (2)2.796 (4)170 (3)
O5—H52···O20.85 (3)1.81 (3)2.646 (4)168 (4)

Symmetry codes: (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2769).

References

  • Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem.21, 1391–1395.
  • Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hökelek, T., Budak, K. & Necefouglu, H. (1997). Acta Cryst. C53, 1049–1051.
  • Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.
  • Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505–m506. [PMC free article] [PubMed]
  • Hökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128–1131.
  • Hökelek, T. & Necefouglu, H. (1997). Acta Cryst. C53, 187–189.
  • Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.
  • Hökelek, T., Necefouglu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim.22, 124–128.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m324–m325. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim.7, 1409–1416.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography