PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m250–m251.
Published online 2009 February 4. doi:  10.1107/S1600536809001202
PMCID: PMC2968563

[1,3-Bis(diphenyl­phosphino)pentane-κ2 P,P′]tetra­carbonyl­chromium(0)

Abstract

In the title compound, [Cr(C29H30P2)(CO)4], the Cr atom is octa­hedrally coordinated by four carbonyl ligands and one bidentate phosphine ligand, which is bounded as a chelate in a cis position. The average Cr—P and Cr—C bond lengths are 2.377 and 1.865 Å, respectively.

Related literature

For chromium–carbonyl complexes see: Shawkataly et al. (1996 [triangle], 1997 [triangle], 2006 [triangle]); for Cr—C bond lengths see: Bennett et al. (1971 [triangle]); Ueng & Shih (1992 [triangle]). For Cr—C and C—O distances see Whitaker & Jeffery (1967 [triangle]); Jost et al. (1975 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m250-scheme1.jpg

Experimental

Crystal data

  • [Cr(C29H30P2)(CO)4]
  • M r = 604.51
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m250-efi1.jpg
  • a = 13.3013 (2) Å
  • b = 14.2333 (2) Å
  • c = 15.6694 (3) Å
  • V = 2966.55 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.53 mm−1
  • T = 293 (2) K
  • 0.48 × 0.42 × 0.28 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.785, T max = 0.866
  • 24593 measured reflections
  • 7364 independent reflections
  • 6364 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.072
  • S = 1.03
  • 7364 reflections
  • 361 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.30 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3256 Friedel pairs
  • Flack parameter: −0.001 (13)

Data collection: SMART (Siemens, 1994 [triangle]); cell refinement: SAINT (Siemens, 1994 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001202/kj2106sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001202/kj2106Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Malaysian Government and Universiti Sains Malaysia for support (IRPA grant Nos. 09–02–05–0008 and 190–9609–2801).

supplementary crystallographic information

Comment

It is generally believed that the metal (M) to carbon monoxide bond involves both OC—Mσ-bonding and M—CO π-bonding. In view of this phenomenon, the bonding characteristics of metal carbonyls with a phosphine ligand in phosphine-substituted metal carbonyls are of interest. A search of the Cambridge Structural Database (Version 5.29; Allen, 2002) revealed only 88 complexes of group VI metal carbonyls with a 3-carbon backbone bidentate phosphine. However, there are only a few examples of chromium carbonyl complexes (Shawkataly et al., 2006). Previously, we reported several crystal structures of phosphine-substituted group VI metal carbonyls (Shawkataly et al., 1996,1997). We present here the crystal structure of the title compound.

The title compound has an expected octahedral geometry (Fig. 1). The Cr—C bond lengths of the cis carbonyl ligands (with respect to the P atom) are slightly longer than those for the trans carbonyl group (Table 1). This trend was also observed in Cr[Ph2P(CH2)2PPh2](CO)4 (Bennett et al., 1971) and Cr[Ph2P(CH2)4PPh2](CO)4 (Ueng & Shih, 1992). The bidentate phosphine bite angle [91.389 (18)°] is intermediate between that observed in Cr[Ph2P(CH2)2PPh2](CO)4 (83.41 (8)°] and that in Cr[Ph2P(CH2)4PPh2](CO)4 (93.29 (5)°]. Comparison of the mean Cr—C and C—O distances in the title compound [1.872 (2) and 1.145 (6) Å, respectively] with those in Cr(CO)6 [1.909 (3) and 1.137 (4) Å, respectively (Whitaker & Jeffery, 1967); and 1.918 (2) and 1.141 (2) Å, respectively (Jost et al., 1975)], indicates stronger bonding owing to the back-bondi ng abilities of the bidentate phosphine. The Cr—P bond lengths, with an average values of 2.3792 (5) Å, are relatively short inspite of the presence of the bulky phosphine ligand.

Experimental

A mixture of Cr(CO)6 (1.064 mmol) and Ph2P(CH3)CH(CH2)CH(CH3)PPh2 (1.065 mmol) was refluxed in a purified mixture of petroleum ether (60–80 °C, 25 ml) and butanol (20 ml) for ca 12 h under nitrogen atmosphere. The solvent was evaporated and the crude product was dissolved in acetone (5 ml) and filtered. Yellow crystals (75% yield) were obtained by slow evaporation of the acetone solution at room temperature. Analysis calculated for C33H30CrO4P2: C 65.55, H 5.01%; found C 65.54, H 5.00%.

Refinement

All H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.93–0.98Å, C—H= 0.97 Å (methylene) and C—H= 0.96 Å (methyl) and Uiso(H) = 1.2Ueq(C, aromatic, methylene) and Uiso(H)=1.5Uequ(C methyl). A rotating group model was used for the methyl group. The number of Friedel pairs are 3260.

Figures

Fig. 1.
View of the title compound (50% probability displacement ellipsoids).

Crystal data

[Cr(C29H30P2)(CO)4]F(000) = 1256
Mr = 604.51Dx = 1.354 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 427 reflections
a = 13.3013 (2) Åθ = 2–27.5°
b = 14.2333 (2) ŵ = 0.53 mm1
c = 15.6694 (3) ÅT = 293 K
V = 2966.55 (8) Å3Prism, yellow
Z = 40.48 × 0.42 × 0.28 mm

Data collection

Siemens SMART CCD diffractometer7364 independent reflections
Radiation source: fine-focus sealed tube6364 reflections with I > 2σ(I)
graphiteRint = 0.049
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −17→12
Tmin = 0.785, Tmax = 0.866k = −18→18
24593 measured reflectionsl = −18→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.072w = 1/[σ2(Fo2) + (0.0349P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7364 reflectionsΔρmax = 0.19 e Å3
361 parametersΔρmin = −0.29 e Å3
0 restraintsAbsolute structure: Flack (1983), 3256 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.001 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cr10.21688 (2)0.11992 (2)0.931300 (16)0.03170 (7)
P20.33880 (3)0.10714 (3)0.82130 (3)0.03095 (10)
P30.10424 (3)0.01926 (3)0.85607 (3)0.03203 (10)
O10.35830 (13)0.24334 (14)1.02996 (12)0.0745 (5)
O20.07737 (12)0.14004 (13)1.08126 (9)0.0648 (5)
O30.29780 (14)−0.05494 (12)1.01576 (10)0.0644 (4)
O40.11867 (14)0.29523 (11)0.85872 (12)0.0696 (5)
C10.30535 (15)0.19547 (15)0.99132 (13)0.0448 (5)
C20.12769 (14)0.13194 (15)1.02249 (12)0.0434 (5)
C30.26815 (15)0.01112 (15)0.98236 (11)0.0417 (4)
C40.15612 (16)0.22871 (15)0.88349 (12)0.0436 (5)
C50.01810 (14)0.06112 (14)0.77239 (11)0.0382 (4)
C60.05328 (15)0.12712 (14)0.71520 (12)0.0425 (4)
H60.11370.15770.72620.051*
C70.00026 (19)0.14868 (16)0.64175 (14)0.0573 (6)
H70.02630.19150.60280.069*
C8−0.09146 (19)0.10630 (19)0.62657 (14)0.0642 (7)
H8−0.12760.12100.57760.077*
C9−0.12896 (18)0.0428 (2)0.68371 (15)0.0625 (7)
H9−0.19110.01500.67360.075*
C10−0.07513 (16)0.01932 (17)0.75678 (14)0.0513 (5)
H10−0.1012−0.02410.79520.062*
C110.01881 (13)−0.03718 (14)0.93242 (12)0.0390 (4)
C12−0.06244 (15)0.01504 (18)0.96266 (13)0.0523 (5)
H12−0.07520.07430.94010.063*
C13−0.12452 (17)−0.0206 (2)1.02619 (15)0.0691 (8)
H13−0.17880.01441.04590.083*
C14−0.10527 (18)−0.1081 (2)1.05985 (14)0.0720 (8)
H14−0.1470−0.13221.10220.086*
C15−0.0251 (2)−0.1601 (2)1.03155 (14)0.0639 (7)
H15−0.0126−0.21901.05480.077*
C160.03757 (16)−0.12478 (16)0.96805 (12)0.0475 (5)
H160.0922−0.16000.94940.057*
C170.32879 (14)0.20310 (13)0.74299 (11)0.0356 (4)
C180.29810 (16)0.19096 (15)0.65920 (13)0.0486 (5)
H180.28860.13070.63780.058*
C190.2816 (2)0.26759 (18)0.60726 (16)0.0643 (6)
H190.25940.25840.55160.077*
C200.29715 (19)0.35629 (19)0.63617 (18)0.0676 (7)
H200.28560.40740.60060.081*
C210.33051 (18)0.37031 (16)0.71937 (18)0.0620 (6)
H210.34260.43080.73920.074*
C220.34562 (16)0.29421 (14)0.77231 (14)0.0477 (5)
H220.36720.30380.82810.057*
C230.47292 (13)0.11750 (14)0.84941 (12)0.0374 (4)
C240.54190 (15)0.14519 (15)0.78829 (14)0.0488 (5)
H240.51950.16220.73420.059*
C250.64357 (16)0.14802 (18)0.80620 (17)0.0592 (6)
H250.68890.16760.76470.071*
C260.67731 (16)0.12194 (17)0.88523 (16)0.0590 (6)
H260.74580.12300.89710.071*
C270.61055 (17)0.09426 (16)0.94707 (16)0.0577 (6)
H270.63390.07681.00070.069*
C280.50785 (15)0.09223 (15)0.92967 (14)0.0477 (5)
H280.46270.07390.97180.057*
C290.16603 (14)−0.07883 (12)0.79726 (11)0.0348 (4)
H290.2055−0.11510.83850.042*
C300.09214 (18)−0.14639 (15)0.75374 (14)0.0520 (5)
H30A0.0463−0.17100.79540.078*
H30B0.1287−0.19720.72800.078*
H30C0.0552−0.11330.71060.078*
C310.23919 (13)−0.04033 (13)0.72887 (11)0.0355 (4)
H31A0.2505−0.08990.68740.043*
H31B0.20540.01050.69930.043*
C320.34278 (14)−0.00379 (13)0.75768 (11)0.0356 (4)
H320.38060.01040.70560.043*
C330.40092 (16)−0.08103 (14)0.80401 (15)0.0497 (5)
H33A0.4652−0.05720.82160.074*
H33B0.4104−0.13340.76630.074*
H33C0.3637−0.10090.85330.074*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cr10.02906 (13)0.03611 (14)0.02992 (12)0.00083 (12)−0.00075 (11)−0.00429 (12)
P20.0271 (2)0.0337 (2)0.0320 (2)0.00001 (19)−0.00125 (17)−0.00244 (18)
P30.0275 (2)0.0372 (2)0.0314 (2)−0.00126 (18)−0.00068 (18)−0.00108 (19)
O10.0532 (10)0.0809 (12)0.0895 (13)−0.0080 (9)−0.0075 (9)−0.0435 (11)
O20.0598 (9)0.0915 (13)0.0432 (8)0.0009 (9)0.0148 (7)−0.0130 (8)
O30.0705 (11)0.0641 (10)0.0585 (9)0.0125 (9)0.0022 (8)0.0236 (8)
O40.0799 (12)0.0527 (10)0.0763 (11)0.0254 (9)−0.0090 (10)0.0008 (9)
C10.0381 (10)0.0484 (11)0.0480 (11)0.0004 (9)0.0006 (9)−0.0132 (9)
C20.0410 (10)0.0521 (12)0.0370 (10)0.0002 (9)−0.0035 (8)−0.0068 (9)
C30.0394 (10)0.0519 (11)0.0337 (9)−0.0011 (9)0.0015 (8)0.0012 (8)
C40.0415 (11)0.0472 (11)0.0422 (10)0.0042 (10)−0.0019 (9)−0.0086 (9)
C50.0335 (9)0.0448 (10)0.0362 (9)0.0057 (8)−0.0038 (8)−0.0019 (8)
C60.0423 (10)0.0425 (11)0.0428 (10)0.0046 (9)−0.0039 (8)0.0008 (9)
C70.0696 (15)0.0531 (13)0.0493 (12)0.0118 (12)−0.0021 (12)0.0099 (11)
C80.0666 (15)0.0781 (17)0.0478 (12)0.0153 (14)−0.0230 (11)−0.0005 (12)
C90.0440 (12)0.0866 (18)0.0569 (14)−0.0002 (12)−0.0165 (11)−0.0009 (13)
C100.0398 (11)0.0650 (14)0.0491 (12)−0.0049 (10)−0.0078 (9)0.0047 (11)
C110.0296 (8)0.0541 (11)0.0333 (9)−0.0074 (8)−0.0019 (8)−0.0020 (9)
C120.0381 (10)0.0736 (15)0.0451 (11)0.0030 (11)0.0015 (9)0.0009 (11)
C130.0354 (11)0.124 (2)0.0482 (12)0.0020 (14)0.0072 (10)0.0005 (15)
C140.0499 (13)0.125 (2)0.0411 (11)−0.0204 (16)0.0055 (10)0.0173 (15)
C150.0670 (16)0.0786 (17)0.0461 (12)−0.0227 (14)−0.0002 (12)0.0155 (12)
C160.0479 (11)0.0541 (12)0.0406 (10)−0.0079 (11)0.0025 (9)0.0027 (10)
C170.0290 (9)0.0384 (10)0.0394 (9)−0.0028 (8)0.0018 (8)0.0020 (8)
C180.0485 (12)0.0506 (11)0.0465 (11)−0.0083 (10)−0.0059 (9)0.0091 (9)
C190.0620 (14)0.0724 (16)0.0585 (13)−0.0095 (14)−0.0087 (12)0.0269 (12)
C200.0587 (14)0.0624 (15)0.0818 (17)0.0047 (12)0.0057 (14)0.0332 (14)
C210.0523 (13)0.0380 (11)0.0958 (19)−0.0006 (10)0.0202 (13)0.0070 (12)
C220.0428 (11)0.0426 (11)0.0577 (12)−0.0026 (9)0.0070 (10)−0.0020 (9)
C230.0286 (8)0.0377 (9)0.0458 (9)0.0011 (8)−0.0039 (7)−0.0074 (9)
C240.0366 (10)0.0571 (13)0.0528 (12)0.0000 (9)−0.0012 (9)−0.0013 (10)
C250.0312 (10)0.0642 (15)0.0822 (16)−0.0029 (10)0.0048 (11)−0.0068 (13)
C260.0320 (10)0.0591 (14)0.0857 (16)0.0036 (10)−0.0140 (11)−0.0225 (13)
C270.0479 (12)0.0627 (14)0.0624 (14)0.0135 (11)−0.0213 (11)−0.0126 (11)
C280.0408 (10)0.0550 (12)0.0472 (11)0.0045 (9)−0.0063 (9)−0.0056 (10)
C290.0337 (9)0.0345 (9)0.0362 (9)−0.0024 (8)0.0010 (8)−0.0023 (7)
C300.0532 (12)0.0475 (12)0.0553 (12)−0.0159 (10)0.0072 (10)−0.0128 (10)
C310.0350 (9)0.0388 (10)0.0327 (8)−0.0024 (7)0.0014 (7)−0.0058 (7)
C320.0302 (8)0.0393 (9)0.0373 (9)0.0003 (8)0.0057 (7)−0.0054 (8)
C330.0403 (11)0.0421 (11)0.0665 (14)0.0091 (9)−0.0008 (10)−0.0081 (10)

Geometric parameters (Å, °)

Cr1—C11.851 (2)C16—H160.9300
Cr1—C21.8650 (19)C17—C181.386 (3)
Cr1—C31.872 (2)C17—C221.394 (3)
Cr1—C41.901 (2)C18—C191.379 (3)
Cr1—P22.3736 (5)C18—H180.9300
Cr1—P32.3847 (5)C19—C201.357 (4)
P2—C171.8409 (19)C19—H190.9300
P2—C231.8434 (17)C20—C211.391 (4)
P2—C321.8680 (18)C20—H200.9300
P3—C111.8352 (19)C21—C221.379 (3)
P3—C51.8405 (18)C21—H210.9300
P3—C291.8637 (18)C22—H220.9300
O1—C11.152 (2)C23—C241.384 (3)
O2—C21.144 (2)C23—C281.388 (3)
O3—C31.146 (2)C24—C251.382 (3)
O4—C41.138 (2)C24—H240.9300
C5—C61.380 (3)C25—C261.368 (3)
C5—C101.397 (3)C25—H250.9300
C6—C71.384 (3)C26—C271.372 (3)
C6—H60.9300C26—H260.9300
C7—C81.382 (3)C27—C281.393 (3)
C7—H70.9300C27—H270.9300
C8—C91.367 (3)C28—H280.9300
C8—H80.9300C29—C301.535 (3)
C9—C101.391 (3)C29—C311.548 (2)
C9—H90.9300C29—H290.9800
C10—H100.9300C30—H30A0.9600
C11—C161.389 (3)C30—H30B0.9600
C11—C121.395 (3)C30—H30C0.9600
C12—C131.389 (3)C31—C321.540 (2)
C12—H120.9300C31—H31A0.9700
C13—C141.376 (4)C31—H31B0.9700
C13—H130.9300C32—C331.528 (3)
C14—C151.371 (4)C32—H320.9800
C14—H140.9300C33—H33A0.9600
C15—C161.392 (3)C33—H33B0.9600
C15—H150.9300C33—H33C0.9600
C1—Cr1—C287.81 (8)C18—C17—C22118.39 (18)
C1—Cr1—C391.82 (9)C18—C17—P2124.08 (15)
C2—Cr1—C388.86 (9)C22—C17—P2117.33 (15)
C1—Cr1—C489.84 (9)C19—C18—C17120.5 (2)
C2—Cr1—C487.52 (9)C19—C18—H18119.7
C3—Cr1—C4175.96 (9)C17—C18—H18119.7
C1—Cr1—P288.80 (6)C20—C19—C18121.0 (2)
C2—Cr1—P2176.35 (6)C20—C19—H19119.5
C3—Cr1—P289.89 (6)C18—C19—H19119.5
C4—Cr1—P293.83 (6)C19—C20—C21119.7 (2)
C1—Cr1—P3178.55 (7)C19—C20—H20120.2
C2—Cr1—P391.96 (6)C21—C20—H20120.2
C3—Cr1—P386.74 (6)C22—C21—C20119.8 (2)
C4—Cr1—P391.58 (6)C22—C21—H21120.1
P2—Cr1—P391.389 (18)C20—C21—H21120.1
C17—P2—C2399.78 (9)C21—C22—C17120.6 (2)
C17—P2—C32105.87 (8)C21—C22—H22119.7
C23—P2—C3299.66 (8)C17—C22—H22119.7
C17—P2—Cr1112.20 (6)C24—C23—C28118.61 (17)
C23—P2—Cr1118.79 (6)C24—C23—P2119.95 (14)
C32—P2—Cr1118.14 (6)C28—C23—P2121.31 (15)
C11—P3—C5102.74 (9)C25—C24—C23121.1 (2)
C11—P3—C29105.52 (9)C25—C24—H24119.4
C5—P3—C2999.48 (9)C23—C24—H24119.4
C11—P3—Cr1109.25 (6)C26—C25—C24119.8 (2)
C5—P3—Cr1123.28 (7)C26—C25—H25120.1
C29—P3—Cr1114.67 (6)C24—C25—H25120.1
O1—C1—Cr1178.18 (18)C25—C26—C27120.3 (2)
O2—C2—Cr1176.29 (17)C25—C26—H26119.8
O3—C3—Cr1177.93 (18)C27—C26—H26119.8
O4—C4—Cr1176.72 (18)C26—C27—C28120.1 (2)
C6—C5—C10118.50 (18)C26—C27—H27119.9
C6—C5—P3118.16 (14)C28—C27—H27119.9
C10—C5—P3122.65 (16)C23—C28—C27120.0 (2)
C5—C6—C7121.2 (2)C23—C28—H28120.0
C5—C6—H6119.4C27—C28—H28120.0
C7—C6—H6119.4C30—C29—C31108.47 (15)
C8—C7—C6119.8 (2)C30—C29—P3113.99 (14)
C8—C7—H7120.1C31—C29—P3110.76 (13)
C6—C7—H7120.1C30—C29—H29107.8
C9—C8—C7119.9 (2)C31—C29—H29107.8
C9—C8—H8120.1P3—C29—H29107.8
C7—C8—H8120.1C29—C30—H30A109.5
C8—C9—C10120.7 (2)C29—C30—H30B109.5
C8—C9—H9119.7H30A—C30—H30B109.5
C10—C9—H9119.7C29—C30—H30C109.5
C9—C10—C5119.9 (2)H30A—C30—H30C109.5
C9—C10—H10120.0H30B—C30—H30C109.5
C5—C10—H10120.0C32—C31—C29118.62 (15)
C16—C11—C12118.76 (19)C32—C31—H31A107.7
C16—C11—P3122.94 (15)C29—C31—H31A107.7
C12—C11—P3117.91 (16)C32—C31—H31B107.7
C13—C12—C11120.6 (2)C29—C31—H31B107.7
C13—C12—H12119.7H31A—C31—H31B107.1
C11—C12—H12119.7C33—C32—C31110.44 (16)
C14—C13—C12119.6 (2)C33—C32—P2111.66 (13)
C14—C13—H13120.2C31—C32—P2114.61 (12)
C12—C13—H13120.2C33—C32—H32106.5
C15—C14—C13120.6 (2)C31—C32—H32106.5
C15—C14—H14119.7P2—C32—H32106.5
C13—C14—H14119.7C32—C33—H33A109.5
C14—C15—C16120.2 (3)C32—C33—H33B109.5
C14—C15—H15119.9H33A—C33—H33B109.5
C16—C15—H15119.9C32—C33—H33C109.5
C11—C16—C15120.2 (2)H33A—C33—H33C109.5
C11—C16—H16119.9H33B—C33—H33C109.5
C15—C16—H16119.9
C1—Cr1—P2—C17−87.62 (9)C13—C14—C15—C16−0.2 (4)
C3—Cr1—P2—C17−179.44 (9)C12—C11—C16—C151.3 (3)
C4—Cr1—P2—C172.15 (9)P3—C11—C16—C15173.94 (17)
P3—Cr1—P2—C1793.82 (7)C14—C15—C16—C11−0.6 (3)
C1—Cr1—P2—C2328.07 (10)C23—P2—C17—C18121.48 (17)
C3—Cr1—P2—C23−63.75 (10)C32—P2—C17—C1818.42 (19)
C4—Cr1—P2—C23117.84 (10)Cr1—P2—C17—C18−111.79 (16)
P3—Cr1—P2—C23−150.49 (8)C23—P2—C17—C22−63.80 (17)
C1—Cr1—P2—C32148.80 (10)C32—P2—C17—C22−166.86 (15)
C3—Cr1—P2—C3256.98 (9)Cr1—P2—C17—C2262.93 (16)
C4—Cr1—P2—C32−121.44 (9)C22—C17—C18—C19−2.1 (3)
P3—Cr1—P2—C32−29.76 (7)P2—C17—C18—C19172.58 (18)
C2—Cr1—P3—C11−23.62 (10)C17—C18—C19—C201.5 (4)
C3—Cr1—P3—C1165.13 (9)C18—C19—C20—C210.2 (4)
C4—Cr1—P3—C11−111.19 (9)C19—C20—C21—C22−1.3 (4)
P2—Cr1—P3—C11154.94 (7)C20—C21—C22—C170.7 (3)
C2—Cr1—P3—C596.96 (10)C18—C17—C22—C211.0 (3)
C3—Cr1—P3—C5−174.29 (9)P2—C17—C22—C21−174.05 (17)
C4—Cr1—P3—C59.39 (10)C17—P2—C23—C24−33.81 (18)
P2—Cr1—P3—C5−84.48 (8)C32—P2—C23—C2474.30 (18)
C2—Cr1—P3—C29−141.81 (9)Cr1—P2—C23—C24−155.96 (14)
C3—Cr1—P3—C29−53.06 (9)C17—P2—C23—C28150.40 (17)
C4—Cr1—P3—C29130.62 (9)C32—P2—C23—C28−101.49 (17)
P2—Cr1—P3—C2936.75 (7)Cr1—P2—C23—C2828.25 (19)
C11—P3—C5—C6164.12 (15)C28—C23—C24—C25−0.1 (3)
C29—P3—C5—C6−87.46 (16)P2—C23—C24—C25−176.02 (18)
Cr1—P3—C5—C640.56 (18)C23—C24—C25—C260.9 (4)
C11—P3—C5—C10−25.5 (2)C24—C25—C26—C27−0.9 (4)
C29—P3—C5—C1082.87 (18)C25—C26—C27—C280.2 (4)
Cr1—P3—C5—C10−149.11 (15)C24—C23—C28—C27−0.6 (3)
C10—C5—C6—C7−3.0 (3)P2—C23—C28—C27175.27 (16)
P3—C5—C6—C7167.71 (16)C26—C27—C28—C230.5 (3)
C5—C6—C7—C82.5 (3)C11—P3—C29—C3056.18 (16)
C6—C7—C8—C9−0.6 (4)C5—P3—C29—C30−49.99 (16)
C7—C8—C9—C10−0.8 (4)Cr1—P3—C29—C30176.46 (12)
C8—C9—C10—C50.2 (4)C11—P3—C29—C31178.84 (12)
C6—C5—C10—C91.7 (3)C5—P3—C29—C3172.67 (14)
P3—C5—C10—C9−168.63 (18)Cr1—P3—C29—C31−60.89 (13)
C5—P3—C11—C16134.04 (16)C30—C29—C31—C32−156.37 (17)
C29—P3—C11—C1630.26 (18)P3—C29—C31—C3277.82 (19)
Cr1—P3—C11—C16−93.51 (16)C29—C31—C32—C3358.3 (2)
C5—P3—C11—C12−53.21 (17)C29—C31—C32—P2−68.9 (2)
C29—P3—C11—C12−156.99 (15)C17—P2—C32—C33151.59 (14)
Cr1—P3—C11—C1279.24 (15)C23—P2—C32—C3348.44 (15)
C16—C11—C12—C13−1.1 (3)Cr1—P2—C32—C33−81.72 (14)
P3—C11—C12—C13−174.20 (17)C17—P2—C32—C31−81.88 (14)
C11—C12—C13—C140.3 (4)C23—P2—C32—C31174.97 (14)
C12—C13—C14—C150.4 (4)Cr1—P2—C32—C3144.80 (15)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2106).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Bennett, M. J., Cotton, F. A. & LaPrade, M. D. (1971). Acta Cryst. B27, 1899–1904.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jost, A., Rees, B. & Yelon, W. B. (1975). Acta Cryst. B31, 2649–2658.
  • Shawkataly, O. bin, Islam, S. D., Fun, H.-K. & Didierjean, C. (2006). Acta Cryst. E62, m1086–m1087.
  • Shawkataly, O. bin, Saminathan, T., Fun, H.-K. & Sivakumar, K. (1996). Acta Cryst C52, 1352–1355.
  • Shawkataly, O. bin, Umathavan, A., Ramalingam, K., Fun, H.-K. & Ibrahim, A. R. (1997). Acta Cryst C53, 1543–1545.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Ueng, C.-H. & Shih, G.-Y. (1992). Acta Cryst. C48, 988–991.
  • Whitaker, A. & Jeffery, J. W. (1967). Acta Cryst.23, 977–984.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography