PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m286–m287.
Published online 2009 February 18. doi:  10.1107/S1600536809004899
PMCID: PMC2968558

Hexa-μ-chlorido-hexa­chlorido(η6-hexa­methyl­benzene)trialuminium(III)lanthanum(III) benzene solvate

Abstract

In the title compound, [Al3LaCl12(C12H18)]·C6H6, all mol­ecules are located on a mirror plane. Three chloridoaluminate groups and a hexa­methyl­benzene mol­ecule are bound to the central lanthanum(III) ion, forming a distorted penta­gonal bipyramid with the η6-coordinated arene located at the apical position. The hexa­methyl­benzene ligand disordered between two orientations in a 1:1 ratio is also involved in parallel-slipped π–π stacking inter­molecular inter­actions with a benzene solvent mol­ecule [centroid–centroid distance 3.612 (4) Å].

Related literature

For the previously characterized lanthanum chloro­aluminate and chloro­gallate complexes, see: Filatov et al. (2008 [triangle]). For a recent review of other lanthanide chloro­aluminate complexes, see: Bochkarev (2002 [triangle]). For complexes of lanthanide chloro­gallates with polycyclic aromatic systems, see: Gorlov et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m286-scheme1.jpg

Experimental

Crystal data

  • [Al3LaCl12(C12H18)]·C6H6
  • M r = 885.62
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m286-efi2.jpg
  • a = 12.2127 (6) Å
  • b = 16.4205 (8) Å
  • c = 16.9790 (8) Å
  • V = 3404.9 (3) Å3
  • Z = 4
  • Mo- Kα radiation
  • μ = 2.28 mm−1
  • T = 173 K
  • 0.22 × 0.20 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.613, T max = 0.697
  • 28535 measured reflections
  • 4250 independent reflections
  • 3911 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.063
  • S = 1.05
  • 4250 reflections
  • 189 parameters
  • H-atom parameters not refined
  • Δρmax = 0.89 e Å−3
  • Δρmin = −0.99 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2009 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004899/cv2516sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004899/cv2516Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Science Foundation for financial support (CHE-0546945). We are also very grateful to the University at Albany for supporting the X-ray center at the Department of Chemistry.

supplementary crystallographic information

Comment

We have recently reported X-ray structural characterization of the first two lanthanum(III) chloroaluminate complexes with neutral arenes, [La(η6-C6H5Me)(AlCl4)3] and [La(η6-C6Me6)(AlCl4)3], as well as of the first lanthanum(III) chlorogallate complex, [La(η6-C6Me6)(GaCl4)3] (Filatov et al., 2008). The [La(η6-C6Me6)(AlCl4)3].0.5C6H6 complex crystallizes in the monoclinic P21/c space group with the β angle being close to 90° (β = 90.27°). We later found that under slightly different experimental conditions, namely at a higher temperature (285 versus 273 K), the lanthanum complex with hexamethylbenzene, [La(η6-C6Me6)(AlCl4)3].C6H6 (I), is crystallized.

The molecular structure of (I) is comprised of the three chloroaluminate groups and a hexamethylbenzene molecule bound to the central lanthanum(III) ion (Fig.1). The coordination polyhedron is a distorted pentagonal bipyramid with the η6-arene located at the apical position. The La–C bond distances span from 2.941 (4) to 2.965 (2) Å with a La–centroid distance being 2.613 (3) Å. These distances are comparable to those found in the previously reported complex [La(η6-C6Me6)(AlCl4)3].0.5C6H6 (II) [La—C 2.927 (7)–3.035 (7)Å; La–centroid 2.633 (7)Å].

In (I), coordinated hexamethylbenzene is engaged into π-π stacking interactions with a solvent benzene molecule. The intercentroid distance between their 6-membered rings is 3.612 (4) Å. The two ring planes are not parallel and the dihedral angle is 12.7° (Fig.2). In the above hemisolvate (II), on the contrary, both benzene faces are involved in π-π stacking interactions as benzene is sandwiched between two hexamethylbenzene molecules. The distance between the centroids of the hexamethylbenzene and benzene rings (3.688 (4) Å) is noticeably longer than that found in (I).

Experimental

LaCl3 (100 mg, 0.41 mmol), AlCl3 (163 mg, 1.22 mmol), hexamethylbenzene (66 mg, 0.41 mmol) and an excess of aluminium foil were placed into a Schlenk flask inside the glove box. Benzene (10 ml) was added to the flask and the mixture was refluxed for two hours. The LaCl3, AlCl3, and hexamethylbenzene dissolved completely to give a yellow solution. The solution was filtered while hot through a pad of Celite and then kept at 12°C under argon for 2 days to afford a yellow crystalline material. Yield: 240 mg (65%). IR data (cm-1): 3091 (w), 3071 (w), 3036 (w), 1598 (m), 1531 (w), 1478 (m), 1423 (s), 1382 (m), 1332 (m), 1272 (m), 1180 (w), 1076 (w), 983 (w), 824 (w), 677 (s).

Refinement

All C—H atoms were refined using the riding model approximation, with C—H = 0.95–0.98Å [Uiso(H) = 1.2 or 1.5Ueq(C)]. All other atoms were refined anisotropically. Large anisotropy of the carbon atoms of hexamethylbenzene suggests the presence of disorder. It was modeled over two rotational orientations in a 1:1 ratio. The C5 and C8 carbon atoms lie on a mirror plane and are constrained to have identical anisotropic displacement parameters (EADP command in the SHELXL realm).

Figures

Fig. 1.
A view of the molecular structure of (I), along with the atom numbering scheme [symmetry code: (i) x, -y + 1/2, z]. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms and disordered parts are omitted for clarity.
Fig. 2.
A view of the molecular structure of (I) showing π-π stacking interactions between coordinated C6Me6 and benzene rings.

Crystal data

[Al3LaCl12(C12H18)]·C6H6F(000) = 1728
Mr = 885.62Dx = 1.728 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 7019 reflections
a = 12.2127 (6) Åθ = 2.5–28.2°
b = 16.4205 (8) ŵ = 2.28 mm1
c = 16.9790 (8) ÅT = 173 K
V = 3404.9 (3) Å3Block, yellow
Z = 40.22 × 0.20 × 0.16 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer4250 independent reflections
Radiation source: fine-focus sealed tube3911 reflections with I > 2σ(I)
graphiteRint = 0.018
0.30° ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −15→16
Tmin = 0.613, Tmax = 0.697k = −21→21
28535 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters not refined
S = 1.05w = 1/[σ2(Fo2) + (0.0304P)2 + 3.1621P] where P = (Fo2 + 2Fc2)/3
4250 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = −0.98 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
La10.106393 (12)0.25000.425620 (9)0.02758 (6)
Al10.09537 (6)0.04272 (4)0.32343 (5)0.04146 (16)
Al2−0.20200 (8)0.25000.41914 (6)0.0403 (2)
Cl1−0.02765 (6)0.03298 (4)0.23836 (5)0.06224 (19)
Cl20.18966 (7)−0.06204 (4)0.34109 (6)0.0684 (2)
Cl30.19872 (5)0.14875 (3)0.30139 (3)0.04206 (13)
Cl40.02586 (5)0.08226 (4)0.43571 (3)0.04489 (14)
Cl5−0.09121 (6)0.25000.52121 (4)0.04250 (18)
Cl6−0.08346 (6)0.25000.32208 (4)0.03682 (16)
Cl7−0.29273 (6)0.14181 (5)0.41927 (4)0.05841 (18)
C10.3384 (3)0.25000.4729 (2)0.0515 (10)
C20.3003 (3)0.17691 (17)0.50333 (19)0.0609 (8)
C30.2212 (3)0.1777 (3)0.5621 (2)0.0823 (13)
C40.1820 (3)0.25000.5901 (2)0.096 (3)
C50.4271 (4)0.25000.4107 (3)0.194 (5)
H5A0.47890.29430.42140.291*0.50
H5B0.39400.25800.35870.291*0.50
H5C0.46590.19780.41180.291*0.50
C60.3258 (8)0.0879 (6)0.4928 (7)0.087 (3)0.50
H6A0.37810.07060.53320.130*0.50
H6B0.35770.07910.44050.130*0.50
H6C0.25830.05610.49770.130*0.50
C70.1582 (8)0.1206 (6)0.6166 (5)0.093 (3)0.50
H7A0.18120.12990.67110.139*0.50
H7B0.17350.06400.60190.139*0.50
H7C0.07960.13120.61170.139*0.50
C6X0.3773 (8)0.1077 (7)0.4617 (6)0.084 (4)0.50
H6X10.43980.09560.49590.126*0.50
H6X20.40390.12810.41090.126*0.50
H6X30.33440.05810.45330.126*0.50
C7X0.2146 (9)0.0787 (5)0.5824 (6)0.092 (3)0.50
H7X10.14250.06590.60450.137*0.50
H7X20.27160.06460.62060.137*0.50
H7X30.22570.04730.53390.137*0.50
C80.1026 (4)0.25000.6586 (3)0.194 (5)
H8A0.06910.19600.66360.291*0.50
H8B0.04540.29070.64940.291*0.50
H8C0.14200.26330.70720.291*0.50
C90.5948 (4)0.25000.6119 (3)0.088 (2)
H90.66000.25000.58140.106*
C100.5464 (3)0.1771 (2)0.6345 (2)0.0750 (10)
H100.57790.12650.61930.090*
C110.4547 (3)0.1790 (2)0.6780 (2)0.0679 (9)
H110.42120.12930.69360.082*
C120.4094 (3)0.25000.7000 (3)0.0646 (12)
H120.34490.25000.73120.077*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
La10.02175 (8)0.03570 (10)0.02528 (9)0.0000.00028 (5)0.000
Al10.0428 (4)0.0342 (3)0.0475 (4)−0.0003 (3)−0.0093 (3)−0.0026 (3)
Al20.0247 (4)0.0577 (6)0.0384 (5)0.0000.0008 (4)0.000
Cl10.0664 (4)0.0525 (4)0.0678 (4)0.0015 (3)−0.0311 (3)−0.0082 (3)
Cl20.0666 (4)0.0438 (3)0.0947 (6)0.0136 (3)−0.0232 (4)−0.0036 (4)
Cl30.0434 (3)0.0424 (3)0.0404 (3)−0.0030 (2)0.0099 (2)−0.0068 (2)
Cl40.0460 (3)0.0431 (3)0.0456 (3)−0.0101 (2)0.0013 (2)0.0080 (2)
Cl50.0288 (3)0.0687 (5)0.0300 (3)0.0000.0031 (3)0.000
Cl60.0277 (3)0.0530 (4)0.0298 (3)0.000−0.0025 (3)0.000
Cl70.0418 (3)0.0720 (5)0.0615 (4)−0.0171 (3)0.0028 (3)−0.0021 (3)
C10.0227 (14)0.099 (3)0.0325 (16)0.000−0.0035 (12)0.000
C20.0654 (17)0.0486 (14)0.0688 (18)0.0173 (13)−0.0438 (16)−0.0151 (13)
C30.071 (2)0.114 (3)0.0617 (19)−0.055 (2)−0.0416 (18)0.055 (2)
C40.0269 (19)0.237 (9)0.0259 (18)0.000−0.0009 (14)0.000
C50.0328 (17)0.507 (15)0.0414 (19)0.0000.0080 (14)0.000
C60.082 (7)0.060 (5)0.118 (9)0.034 (5)−0.054 (6)−0.025 (5)
C70.099 (7)0.110 (7)0.070 (5)−0.061 (6)−0.042 (5)0.058 (5)
C6X0.075 (6)0.089 (8)0.087 (7)0.044 (6)−0.037 (5)−0.040 (6)
C7X0.111 (8)0.067 (5)0.097 (7)−0.032 (5)−0.053 (6)0.048 (5)
C80.0328 (17)0.507 (15)0.0414 (19)0.0000.0080 (14)0.000
C90.052 (3)0.172 (7)0.041 (2)0.0000.0042 (19)0.000
C100.081 (2)0.080 (2)0.0634 (19)0.029 (2)−0.0217 (18)−0.0169 (17)
C110.070 (2)0.069 (2)0.0653 (19)−0.0142 (17)−0.0277 (16)0.0189 (16)
C120.039 (2)0.105 (4)0.049 (2)0.000−0.0136 (17)0.000

Geometric parameters (Å, °)

La1—C12.945 (3)C3—C7X1.663 (8)
La1—C22.965 (2)C4—C3i1.366 (5)
La1—C32.957 (3)C4—C81.514 (6)
La1—C42.941 (4)C5—H5A0.9800
La1—Cl32.9128 (5)C5—H5B0.9800
La1—Cl42.9298 (6)C5—H5C0.9800
La1—Cl52.9083 (7)C8—H8A0.9800
La1—Cl62.9097 (7)C8—H8B0.9800
La1—Cg12.613 (3)C8—H8C0.9800
Cg1—Cg23.612 (4)C6—H6A0.9800
La1—Cl3i2.9128 (5)C6—H6B0.9800
La1—Cl4i2.9298 (6)C6—H6C0.9800
La1—C3i2.957 (3)C7—H7A0.9800
La1—C2i2.965 (2)C7—H7B0.9800
Al1—Cl12.0902 (10)C7—H7C0.9800
Al1—Cl22.0918 (10)C6X—H6X10.9800
Al1—Cl32.1828 (9)C6X—H6X20.9800
Al1—Cl42.1855 (10)C6X—H6X30.9800
Al2—Cl72.0937 (9)C7X—H7X10.9800
Al2—Cl7i2.0937 (9)C7X—H7X20.9800
Al2—Cl62.1936 (12)C7X—H7X30.9800
Al2—Cl52.1987 (12)C9—C101.389 (5)
C1—C2i1.387 (4)C9—C10i1.389 (5)
C1—C21.387 (4)C9—H90.9500
C1—C51.513 (6)C10—C111.343 (5)
C2—C31.389 (5)C10—H100.9500
C2—C61.505 (10)C11—C121.344 (4)
C2—C6X1.635 (10)C11—H110.9500
C3—C41.366 (5)C12—C11i1.344 (4)
C3—C71.525 (7)C12—H120.9500
Cl5—La1—Cl671.09 (2)Cl7—Al2—Cl5108.96 (4)
Cl5—La1—Cl3136.497 (15)Cl7i—Al2—Cl5108.96 (4)
Cl6—La1—Cl382.586 (17)Cl6—Al2—Cl5100.72 (5)
Cl5—La1—Cl3i136.497 (14)Al1—Cl3—La196.16 (3)
Cl6—La1—Cl3i82.586 (17)Al1—Cl4—La195.61 (3)
Cl3—La1—Cl3i69.61 (2)Al2—Cl5—La194.06 (4)
Cl5—La1—Cl471.868 (13)Al2—Cl6—La194.13 (4)
Cl6—La1—Cl476.576 (13)C2i—C1—C2119.9 (4)
Cl3—La1—Cl468.636 (17)C2i—C1—C5119.99 (18)
Cl3i—La1—Cl4135.147 (17)C2—C1—C5119.99 (18)
Cl5—La1—Cl4i71.868 (13)C2i—C1—La177.23 (17)
Cl6—La1—Cl4i76.576 (13)C2—C1—La177.23 (17)
Cl3—La1—Cl4i135.147 (17)C5—C1—La1119.9 (3)
Cl3i—La1—Cl4i68.636 (17)C1—C2—C3119.5 (3)
Cl4—La1—Cl4i140.15 (3)C1—C2—C6136.6 (6)
Cl5—La1—C474.37 (8)C3—C2—C6103.8 (6)
Cl6—La1—C4145.46 (8)C1—C2—La175.63 (16)
Cl3—La1—C4124.47 (6)C3—C2—La176.11 (16)
Cl3i—La1—C4124.47 (6)C6—C2—La1120.4 (4)
Cl4—La1—C492.86 (3)C6X—C2—La1123.2 (4)
Cl4i—La1—C492.86 (3)C4—C3—C2120.1 (3)
Cl5—La1—C1130.25 (7)C4—C3—C798.4 (6)
Cl6—La1—C1158.66 (7)C2—C3—C7141.3 (6)
Cl3—La1—C179.93 (6)C4—C3—La176.0 (2)
Cl3i—La1—C179.93 (6)C2—C3—La176.76 (15)
Cl4—La1—C1107.879 (16)C7—C3—La1118.9 (3)
Cl4i—La1—C1107.879 (17)C3i—C4—C3120.8 (4)
C4—La1—C155.88 (10)C3i—C4—C8119.5 (2)
Cl5—La1—C3i87.49 (8)C3—C4—C8119.5 (2)
Cl6—La1—C3i148.34 (6)C3i—C4—La177.2 (2)
Cl3—La1—C3i127.81 (6)C3—C4—La177.2 (2)
Cl3i—La1—C3i98.90 (10)C8—C4—La1121.9 (3)
Cl4—La1—C3i119.39 (10)C1—C5—H5A109.5
Cl4i—La1—C3i74.68 (7)C1—C5—H5B109.5
C4—La1—C3i26.77 (10)H5A—C5—H5B109.5
C1—La1—C3i47.94 (8)C1—C5—H5C109.5
Cl5—La1—C387.49 (8)H5A—C5—H5C109.5
Cl6—La1—C3148.34 (6)H5B—C5—H5C109.5
Cl3—La1—C398.90 (10)C4—C8—H8A109.5
Cl3i—La1—C3127.81 (6)C4—C8—H8B109.5
Cl4—La1—C374.68 (7)H8A—C8—H8B109.5
Cl4i—La1—C3119.39 (10)C4—C8—H8C109.5
C4—La1—C326.77 (10)H8A—C8—H8C109.5
C1—La1—C347.94 (8)H8B—C8—H8C109.5
C3i—La1—C347.35 (17)C2—C6—H6A109.5
Cl5—La1—C2i114.49 (8)C2—C6—H6B109.5
Cl6—La1—C2i154.88 (5)C2—C6—H6C109.5
Cl3—La1—C2i104.12 (8)C3—C7—H7A109.5
Cl3i—La1—C2i77.41 (6)C3—C7—H7B109.5
Cl4—La1—C2i128.51 (5)C3—C7—H7C109.5
Cl4i—La1—C2i82.04 (6)C2—C6X—H6X1109.5
C4—La1—C2i47.68 (9)C2—C6X—H6X2109.5
C1—La1—C2i27.14 (7)H6X1—C6X—H6X2109.5
C3i—La1—C2i27.13 (10)C2—C6X—H6X3109.5
C3—La1—C2i55.61 (8)H6X1—C6X—H6X3109.5
Cl5—La1—C2114.49 (8)H6X2—C6X—H6X3109.5
Cl6—La1—C2154.88 (5)C3—C7X—H7X1109.5
Cl3—La1—C277.41 (6)C3—C7X—H7X2109.5
Cl3i—La1—C2104.12 (8)H7X1—C7X—H7X2109.5
Cl4—La1—C282.04 (6)C3—C7X—H7X3109.5
Cl4i—La1—C2128.51 (5)H7X1—C7X—H7X3109.5
C4—La1—C247.68 (9)H7X2—C7X—H7X3109.5
C1—La1—C227.14 (7)C10—C9—C10i119.1 (5)
C3i—La1—C255.61 (8)C10—C9—H9120.5
C3—La1—C227.13 (10)C10i—C9—H9120.5
C2i—La1—C247.76 (11)C11—C10—C9119.2 (4)
Cl1—Al1—Cl2115.58 (4)C11—C10—H10120.4
Cl1—Al1—Cl3110.99 (4)C9—C10—H10120.4
Cl2—Al1—Cl3111.24 (4)C10—C11—C12121.1 (4)
Cl1—Al1—Cl4110.26 (4)C10—C11—H11119.5
Cl2—Al1—Cl4109.45 (5)C12—C11—H11119.5
Cl3—Al1—Cl497.89 (3)C11i—C12—C11120.5 (5)
Cl7—Al2—Cl7i116.10 (6)C11i—C12—H12119.8
Cl7—Al2—Cl6110.49 (4)C11—C12—H12119.8
Cl7i—Al2—Cl6110.49 (4)

Symmetry codes: (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2516).

References

  • Bochkarev, M. N. (2002). Chem Rev 102, 2089–2117. [PubMed]
  • Bruker (2003). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Filatov, A. S., Rogachev, A. Yu. & Petrukhina, M. A. (2008). J. Mol. Struct.890, 116-122.
  • Gorlov, M., Hussami, L. L., Fischer, A. & Kloo, L. (2008). Eur. J. Inorg. Chem. pp. 5191–5195.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography