PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o589.
Published online 2009 February 25. doi:  10.1107/S1600536809004012
PMCID: PMC2968556

2-[3-(4-Methoxyphen­yl)-1-phenyl-1H-pyrazol-5-yl]phenol

Abstract

The title compound, C22H18N2O2, was derived from 1-(2-hydroxy­phen­yl)-3-(4-methoxy­phen­yl)propane-1,3-dione. The central pyrazole ring forms dihedral angles of 16.83 (5), 48.97 (4) and 51.68 (4)°, respectively, with the methoxy­phenyl, phenyl and hydroxy­phenyl rings. The crystal packing is stabilized by O—H(...)N hydrogen bonding.

Related literature

For general synthesis, see: Ahmad et al. (1997 [triangle]). For synthetic applications, see: Beeam et al. (1984 [triangle]); Bonati (1980 [triangle]); Elguero (1983 [triangle]); Freyer & Radeglia (1981 [triangle]); Trofinenko (1972 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o589-scheme1.jpg

Experimental

Crystal data

  • C22H18N2O2
  • M r = 342.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o589-efi1.jpg
  • a = 9.5880 (5) Å
  • b = 13.7397 (8) Å
  • c = 14.2771 (7) Å
  • β = 109.340 (4)°
  • V = 1774.68 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 173 (2) K
  • 0.33 × 0.31 × 0.26 mm

Data collection

  • Stoe IPDS-II two-circle diffractometer
  • Absorption correction: none
  • 24784 measured reflections
  • 4085 independent reflections
  • 3676 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.096
  • S = 1.02
  • 4085 reflections
  • 241 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004012/pk2149sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004012/pk2149Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AB is grateful to the Higher Education Commission of Pakistan for the grant that supported this work.

supplementary crystallographic information

Comment

Pyrazoles are important because of their potential for biological activity. They have antipruritic, anti-inflammatory and antirheumatic effects (Beeam et al., 1984). Both traditional and new scientific methods have been used to prepare new materials for medicine (Elguero et al., 1983) and agriculture (Trofinenko, 1972). Neutral and anionic pyrazoles are excellent ligands and their coordination chemistry has been extensively studied (Bonati, 1980). Pyrazoles are also used as analytical reagents (Freyer & Radeglia, 1981). In the molecular structure of the title compound, C22H18N2O2, (Scheme 1, Fig. 1) the central pyrazole ring forms dihedral angles of 16.83 (5)°, 48.97 (4)° and 51.68 (4)° with the methoxyphenyl, phenyl and hydroxyphenyl rings, respectively. The crystal packing is stabilized by an O-H···N hydrogen bond (Table 1).

Experimental

1-(2'-Hydroxyphenyl)-3-(4"-methoxyphenyl) propane-1,3-dione was prepared by a modified Baker Venkataram rearrangement as reported earlier (Ahmad et al. 1997). 2-(3-(4-methxyphenyl)-1-Phenyl-1H-pyrazol-5-yl)phenol was prepared by refluxing 1-(2'-hydroxyphenyl)-3-(4"-methoxyphenyl) propane-1,3-dione (2.7 g, 10 mmol) with phenyl hydrazine (1.08 g,0.99 ml, 10 mmol) in a mixture of 50 ml absolute ethanol and 15 ml glacial acetic acid for seven hours as shown in scheme 2.The oily mixture obtained was purified by a dry silica gel column. The product was recrystallized using absolute ethanol. (Yield: 45%, m.p: 449k)

Refinement

All H atoms could be located by difference Fourier synthesis. They were refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C) or U(H) = 1.5 Ueq(Cmethyl)] using a riding model with C—H(aromatic) = 0.95Å or CH(methyl) = 0.98 Å, respectively. The hydroxyl H atom was freely refined.

Figures

Fig. 1.
Molecular structure of the title compound with displacement ellipsoids at the 50% probability level.
Fig. 2.
Packing diagram of the title compound.
Fig. 3.
The formation of the title compound.

Crystal data

C22H18N2O2F(000) = 720
Mr = 342.38Dx = 1.281 Mg m3
Monoclinic, P21/cMelting point: 449 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.5880 (5) ÅCell parameters from 22780 reflections
b = 13.7397 (8) Åθ = 3.8–27.6°
c = 14.2771 (7) ŵ = 0.08 mm1
β = 109.340 (4)°T = 173 K
V = 1774.68 (16) Å3Block, colourless
Z = 40.33 × 0.31 × 0.26 mm

Data collection

Stoe IPDS-II two-circle diffractometer3676 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
graphiteθmax = 27.7°, θmin = 3.7°
ω scansh = −12→12
24784 measured reflectionsk = −17→17
4085 independent reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096w = 1/[σ2(Fo2) + (0.0463P)2 + 0.5301P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4085 reflectionsΔρmax = 0.28 e Å3
241 parametersΔρmin = −0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.16266 (8)0.90595 (6)0.46141 (6)0.0317 (2)
O20.53923 (9)0.76222 (6)0.18033 (6)0.02732 (18)
H20.513 (2)0.7794 (13)0.1149 (15)0.058 (5)*
N10.54331 (9)0.65343 (6)0.43688 (6)0.02103 (18)
N20.44634 (9)0.69329 (6)0.47836 (6)0.02183 (18)
C30.33084 (11)0.72394 (7)0.40111 (7)0.0216 (2)
C40.35458 (11)0.70369 (7)0.31053 (8)0.0233 (2)
H40.29010.71850.24560.028*
C50.49012 (11)0.65812 (7)0.33524 (7)0.0209 (2)
C110.68123 (11)0.61521 (7)0.50071 (7)0.0208 (2)
C120.68218 (12)0.55147 (8)0.57656 (8)0.0256 (2)
H120.59240.53410.58680.031*
C130.81636 (13)0.51336 (9)0.63747 (9)0.0335 (3)
H130.81820.46970.68950.040*
C140.94712 (13)0.53896 (10)0.62233 (10)0.0402 (3)
H141.03820.51230.66350.048*
C150.94514 (13)0.60346 (11)0.54719 (11)0.0408 (3)
H151.03510.62130.53760.049*
C160.81212 (12)0.64223 (9)0.48577 (9)0.0302 (2)
H160.81080.68650.43440.036*
C310.20092 (11)0.77139 (7)0.41556 (8)0.0221 (2)
C320.06812 (12)0.77997 (8)0.33677 (8)0.0268 (2)
H320.06210.75440.27370.032*
C33−0.05622 (12)0.82502 (8)0.34791 (8)0.0268 (2)
H33−0.14520.83010.29310.032*
C34−0.04804 (11)0.86244 (8)0.44031 (8)0.0241 (2)
C350.08451 (12)0.85507 (9)0.51998 (8)0.0295 (2)
H350.09050.88080.58290.035*
C360.20682 (12)0.81060 (9)0.50782 (8)0.0282 (2)
H360.29600.80650.56250.034*
C37−0.29807 (12)0.92114 (10)0.38164 (9)0.0363 (3)
H37A−0.27860.95930.32930.054*
H37B−0.36770.95650.40630.054*
H37C−0.34060.85810.35470.054*
C510.56695 (10)0.61401 (7)0.27101 (7)0.0205 (2)
C520.58662 (11)0.66787 (7)0.19256 (7)0.0216 (2)
C530.65634 (12)0.62480 (9)0.13073 (8)0.0287 (2)
H530.67250.66180.07910.034*
C540.70182 (12)0.52839 (9)0.14464 (8)0.0306 (2)
H540.74800.49950.10200.037*
C550.68004 (12)0.47382 (8)0.22094 (8)0.0279 (2)
H550.70970.40750.22970.033*
C560.61481 (11)0.51682 (8)0.28402 (8)0.0244 (2)
H560.60230.47990.33690.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0251 (4)0.0429 (5)0.0281 (4)0.0094 (3)0.0101 (3)−0.0034 (3)
O20.0397 (4)0.0253 (4)0.0199 (4)0.0030 (3)0.0138 (3)0.0021 (3)
N10.0234 (4)0.0236 (4)0.0191 (4)0.0017 (3)0.0110 (3)−0.0009 (3)
N20.0247 (4)0.0239 (4)0.0207 (4)0.0018 (3)0.0126 (3)−0.0017 (3)
C30.0256 (5)0.0209 (5)0.0209 (5)0.0004 (4)0.0111 (4)0.0002 (4)
C40.0274 (5)0.0248 (5)0.0199 (5)0.0028 (4)0.0110 (4)0.0016 (4)
C50.0262 (5)0.0203 (4)0.0190 (5)−0.0006 (4)0.0112 (4)0.0004 (4)
C110.0216 (5)0.0211 (4)0.0203 (5)−0.0012 (4)0.0079 (4)−0.0038 (4)
C120.0268 (5)0.0274 (5)0.0228 (5)−0.0031 (4)0.0086 (4)−0.0004 (4)
C130.0376 (6)0.0311 (6)0.0267 (5)0.0028 (5)0.0039 (5)0.0009 (5)
C140.0266 (6)0.0460 (7)0.0402 (7)0.0074 (5)0.0007 (5)−0.0048 (6)
C150.0217 (5)0.0527 (8)0.0487 (7)−0.0039 (5)0.0127 (5)−0.0075 (6)
C160.0283 (5)0.0327 (6)0.0332 (6)−0.0063 (4)0.0148 (4)−0.0012 (5)
C310.0255 (5)0.0217 (5)0.0222 (5)0.0015 (4)0.0119 (4)0.0007 (4)
C320.0296 (5)0.0321 (6)0.0208 (5)0.0031 (4)0.0110 (4)−0.0012 (4)
C330.0251 (5)0.0328 (6)0.0223 (5)0.0035 (4)0.0077 (4)0.0019 (4)
C340.0235 (5)0.0246 (5)0.0269 (5)0.0029 (4)0.0119 (4)0.0007 (4)
C350.0282 (5)0.0378 (6)0.0231 (5)0.0043 (4)0.0095 (4)−0.0070 (4)
C360.0258 (5)0.0362 (6)0.0224 (5)0.0047 (4)0.0075 (4)−0.0037 (4)
C370.0255 (5)0.0483 (7)0.0336 (6)0.0103 (5)0.0078 (5)−0.0015 (5)
C510.0206 (4)0.0241 (5)0.0183 (4)−0.0010 (4)0.0086 (4)−0.0025 (4)
C520.0223 (4)0.0254 (5)0.0175 (4)−0.0009 (4)0.0071 (4)−0.0019 (4)
C530.0318 (5)0.0375 (6)0.0212 (5)0.0030 (5)0.0144 (4)0.0007 (4)
C540.0303 (5)0.0399 (6)0.0253 (5)0.0061 (5)0.0143 (4)−0.0055 (5)
C550.0274 (5)0.0271 (5)0.0304 (5)0.0039 (4)0.0113 (4)−0.0045 (4)
C560.0258 (5)0.0247 (5)0.0249 (5)−0.0001 (4)0.0115 (4)−0.0003 (4)

Geometric parameters (Å, °)

O1—C341.3694 (12)C31—C321.3971 (15)
O1—C371.4307 (14)C31—C361.4067 (14)
O2—C521.3657 (13)C32—C331.3984 (15)
O2—H20.91 (2)C32—H320.9500
N1—C51.3711 (12)C33—C341.3937 (15)
N1—N21.3711 (11)C33—H330.9500
N1—C111.4341 (13)C34—C351.4006 (15)
N2—C31.3457 (13)C35—C361.3833 (15)
C3—C41.4131 (14)C35—H350.9500
C3—C311.4798 (14)C36—H360.9500
C4—C51.3790 (14)C37—H37A0.9800
C4—H40.9500C37—H37B0.9800
C5—C511.4827 (13)C37—H37C0.9800
C11—C121.3904 (14)C51—C561.4041 (14)
C11—C161.3912 (14)C51—C521.4063 (14)
C12—C131.3945 (15)C52—C531.4025 (14)
C12—H120.9500C53—C541.3881 (17)
C13—C141.3863 (18)C53—H530.9500
C13—H130.9500C54—C551.3940 (16)
C14—C151.387 (2)C54—H540.9500
C14—H140.9500C55—C561.3873 (14)
C15—C161.3924 (17)C55—H550.9500
C15—H150.9500C56—H560.9500
C16—H160.9500
C34—O1—C37118.12 (9)C33—C32—H32119.0
C52—O2—H2110.0 (12)C34—C33—C32119.22 (10)
C5—N1—N2111.75 (8)C34—C33—H33120.4
C5—N1—C11129.15 (8)C32—C33—H33120.4
N2—N1—C11119.09 (8)O1—C34—C33124.86 (10)
C3—N2—N1105.23 (8)O1—C34—C35115.55 (9)
N2—C3—C4110.50 (9)C33—C34—C35119.57 (9)
N2—C3—C31121.73 (9)C36—C35—C34120.59 (10)
C4—C3—C31127.77 (9)C36—C35—H35119.7
C5—C4—C3106.20 (9)C34—C35—H35119.7
C5—C4—H4126.9C35—C36—C31120.92 (10)
C3—C4—H4126.9C35—C36—H36119.5
N1—C5—C4106.31 (8)C31—C36—H36119.5
N1—C5—C51123.26 (9)O1—C37—H37A109.5
C4—C5—C51130.28 (9)O1—C37—H37B109.5
C12—C11—C16120.92 (10)H37A—C37—H37B109.5
C12—C11—N1119.50 (9)O1—C37—H37C109.5
C16—C11—N1119.58 (9)H37A—C37—H37C109.5
C11—C12—C13119.27 (10)H37B—C37—H37C109.5
C11—C12—H12120.4C56—C51—C52118.79 (9)
C13—C12—H12120.4C56—C51—C5120.96 (9)
C14—C13—C12120.18 (11)C52—C51—C5120.18 (9)
C14—C13—H13119.9O2—C52—C53121.86 (9)
C12—C13—H13119.9O2—C52—C51118.34 (9)
C13—C14—C15120.09 (11)C53—C52—C51119.79 (10)
C13—C14—H14120.0C54—C53—C52120.35 (10)
C15—C14—H14120.0C54—C53—H53119.8
C14—C15—C16120.45 (11)C52—C53—H53119.8
C14—C15—H15119.8C53—C54—C55120.25 (10)
C16—C15—H15119.8C53—C54—H54119.9
C11—C16—C15119.08 (11)C55—C54—H54119.9
C11—C16—H16120.5C56—C55—C54119.64 (10)
C15—C16—H16120.5C56—C55—H55120.2
C32—C31—C36117.71 (9)C54—C55—H55120.2
C32—C31—C3120.64 (9)C55—C56—C51121.13 (10)
C36—C31—C3121.64 (9)C55—C56—H56119.4
C31—C32—C33121.98 (10)C51—C56—H56119.4
C31—C32—H32119.0
C5—N1—N2—C3−0.35 (11)C36—C31—C32—C33−0.50 (16)
C11—N1—N2—C3178.79 (8)C3—C31—C32—C33−179.54 (10)
N1—N2—C3—C4−0.10 (11)C31—C32—C33—C34−0.12 (17)
N1—N2—C3—C31179.72 (9)C37—O1—C34—C33−4.99 (16)
N2—C3—C4—C50.51 (12)C37—O1—C34—C35176.10 (11)
C31—C3—C4—C5−179.30 (10)C32—C33—C34—O1−178.32 (10)
N2—N1—C5—C40.67 (11)C32—C33—C34—C350.54 (17)
C11—N1—C5—C4−178.37 (9)O1—C34—C35—C36178.63 (11)
N2—N1—C5—C51−175.35 (9)C33—C34—C35—C36−0.33 (17)
C11—N1—C5—C515.61 (16)C34—C35—C36—C31−0.31 (18)
C3—C4—C5—N1−0.69 (11)C32—C31—C36—C350.72 (17)
C3—C4—C5—C51174.95 (10)C3—C31—C36—C35179.74 (10)
C5—N1—C11—C12−131.50 (11)N1—C5—C51—C5650.34 (14)
N2—N1—C11—C1249.52 (13)C4—C5—C51—C56−124.66 (12)
C5—N1—C11—C1648.36 (15)N1—C5—C51—C52−132.78 (10)
N2—N1—C11—C16−130.62 (10)C4—C5—C51—C5252.22 (15)
C16—C11—C12—C13−0.83 (16)C56—C51—C52—O2179.78 (9)
N1—C11—C12—C13179.03 (9)C5—C51—C52—O22.83 (14)
C11—C12—C13—C140.03 (17)C56—C51—C52—C53−1.56 (15)
C12—C13—C14—C150.71 (19)C5—C51—C52—C53−178.50 (9)
C13—C14—C15—C16−0.7 (2)O2—C52—C53—C54−179.36 (10)
C12—C11—C16—C150.87 (17)C51—C52—C53—C542.03 (16)
N1—C11—C16—C15−178.98 (10)C52—C53—C54—C55−0.71 (17)
C14—C15—C16—C11−0.13 (19)C53—C54—C55—C56−1.06 (17)
N2—C3—C31—C32−163.44 (10)C54—C55—C56—C511.52 (16)
C4—C3—C31—C3216.36 (16)C52—C51—C56—C55−0.20 (15)
N2—C3—C31—C3617.57 (15)C5—C51—C56—C55176.71 (10)
C4—C3—C31—C36−162.64 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.91 (2)1.88 (2)2.7894 (11)175.0 (17)

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2149).

References

  • Ahmad, R., Zia-ul-Haq, M., Duddeck, H., Stefaniak, L. & Sitkowski, J. S. (1997). Monatsh. Chem.128, 633–640.
  • Beeam, C. F., Hall, H. L., Huff, A. M., Tummons, R. C. & Grady, S. A. O. (1984). J. Heteroat. Chem.21, 1897–1902.
  • Bonati, F. (1980). Chim. Ind. (Roma), 62, 323–328.
  • Elguero, J. (1983). Comprehensive Heterocyclic Chemistry, Vol. 5, Part 4A, pp. 167, 304. Elmford, New York: Pergamon Press.
  • Freyer, W. & Radeglia, R. (1981). Monatsh. Chem.112, 105–117.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  • Trofinenko, S. (1972). Chem. Rev.72, 497–500.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography