PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o520.
Published online 2009 February 13. doi:  10.1107/S160053680900453X
PMCID: PMC2968554

Propyl 2-(5-bromo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate

Abstract

In the title compound, C14H15BrO4S, the S atom has a distorted trigonal–pyramidal coordination. The O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The mol­ecules form slightly slipped π-stacked inversion-symmetric dimers by inter­molecular aromatic π–π inter­actions, with a centroid-to-centroid distance of 3.695 (4) Å between the benzene rings of neighbouring mol­ecules. The crystal packing is further stabilized by inter­molecular C—H(...)π inter­actions between the methyl­ene H atoms of the propyl group towards the benzene and furan rings of neighbouring mol­ecules, respectively. Additionally, the crystal structure exhibits weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the crystal structures of similar alkyl 2-(5-bromo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate derivatives, see: Choi et al. (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o520-scheme1.jpg

Experimental

Crystal data

  • C14H15BrO4S
  • M r = 359.23
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o520-efi1.jpg
  • a = 8.4538 (6) Å
  • b = 9.8823 (7) Å
  • c = 10.3231 (7) Å
  • α = 72.358 (1)°
  • β = 81.200 (1)°
  • γ = 65.443 (1)°
  • V = 747.16 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.90 mm−1
  • T = 298 K
  • 0.60 × 0.50 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999 [triangle]) T min = 0.187, T max = 0.556
  • 3932 measured reflections
  • 2593 independent reflections
  • 2359 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.097
  • S = 1.07
  • 2593 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900453X/zl2167sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900453X/zl2167Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As a part of our ongoing research on the synthesis and structure of alkyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, we have recently described the crystal structures of isopropyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008a) and methyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008b). Here we report the crystal structure of the title compound, propyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.013 (2) Å from the least-squares plane defined by the nine constituent atoms. The molecular packing (Fig. 2) is stabilized by intermolecular π–π stacking interactions between the benzene rings of neighbouring molecules. Via this interaction the molecules form slightly slipped π-stacked inversion symmetric dimers, with a centroid–centroid distance Cg1···Cg1iii of 3.695 (4) Å between the benzene rings of neighbouring molecules. (Cg is the centroid of the C2–C7 benzene ring, symmetry code as in Fig. 2). The molecular packing is further stabilized by C—H···π interactions; one between the hydrogen of the C11-methylene group and the benzene ring of the benzofuran unit, with a C11—H11B···Cg1i separation of 3.02 Å, and a second between the hydrogen of the C12-methylene group and the furan ring of the benzofuran unit, with a C12—H12B···Cg2i separation of 2.90 Å (Table 1 and Fig. 2; Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively, symmetry code as in Fig. 2). In addition, three weak intermolecular C—H···O hydrogen bonds in the structure were observed (Table 1 and Fig. 3); one between the hydrogen on benzene ring and the oxygen of the S═O unit (C3—H3···O4ii), a second between the hydrogen on benzene ring and the oxygen of the C═O unit (C5—H5···O3iii), and a third between the hydrogen of the C9–methylene group and the S═O unit (C9—H9B···O4iv), respectively.

Experimental

77% 3-chloroperoxybenzoic acid (179 mg, 0.8 mmol) was added in small portions to a stirred solution of propyl 2-(5-bromo-3-methylsulfanyl-1-benzofuran-2-yl)acetate (629 mg, 0.75 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane–ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 81%, m.p. 413–413.5 K; Rf = 0.55 (hexane–ethyl acetate, 1:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 0.94 (t, J = 7.32 Hz, 3H), 1.63–1.72 (m, 2H), 3.07 (s, 3H), 4.05 (s, 2H), 4.11 (t, J = 6.96 Hz, 2H), 7.40 (d, J = 8.76 Hz, 1H), 7.48 (dd, J = 8.76 Hz and J = 1.84 Hz, 1H), 8.09 (d, J = 1.84 Hz, 1H); EI-MS 360 [M+2], 358 [M+].

Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for the methylene, and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the ary and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
π—π and C—H···π interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1.] ...
Fig. 3.
Intermolecular C—H···O hydrogen bonds (dotted lines) in the title compound. [Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+2.]

Crystal data

C14H15BrO4SZ = 2
Mr = 359.23F(000) = 364
Triclinic, P1Dx = 1.597 Mg m3
Hall symbol: -p_1Mo Kα radiation, λ = 0.71073 Å
a = 8.4538 (6) ÅCell parameters from 2872 reflections
b = 9.8823 (7) Åθ = 2.7–28.0°
c = 10.3231 (7) ŵ = 2.90 mm1
α = 72.358 (1)°T = 298 K
β = 81.200 (1)°Block, colourless
γ = 65.443 (1)°0.60 × 0.50 × 0.20 mm
V = 747.16 (9) Å3

Data collection

Bruker SMART CCD diffractometer2593 independent reflections
Radiation source: fine-focus sealed tube2359 reflections with I > 2σ(I)
graphiteRint = 0.014
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.4°
[var phi] and ω scansh = −9→10
Absorption correction: multi-scan (SADABS; Sheldrick, 1999)k = −10→11
Tmin = 0.187, Tmax = 0.556l = −12→10
3932 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.097H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0598P)2 + 0.3564P] where P = (Fo2 + 2Fc2)/3
2593 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.68856 (4)0.78591 (4)0.61232 (4)0.06138 (16)
S0.26099 (9)0.40306 (8)0.96326 (6)0.04277 (19)
O10.1656 (2)0.5416 (2)0.57292 (17)0.0389 (4)
O20.0410 (3)0.1435 (2)0.7276 (3)0.0651 (6)
O30.2856 (3)0.1366 (3)0.7909 (3)0.0628 (6)
O40.2583 (3)0.5257 (3)1.0205 (2)0.0565 (5)
C10.2557 (3)0.4773 (3)0.7850 (2)0.0355 (5)
C20.3457 (3)0.5694 (3)0.6968 (2)0.0345 (5)
C30.4701 (3)0.6215 (3)0.7124 (3)0.0390 (6)
H30.51660.59700.79650.047*
C40.5206 (3)0.7106 (3)0.5974 (3)0.0411 (6)
C50.4525 (4)0.7510 (3)0.4691 (3)0.0448 (6)
H50.48820.81440.39490.054*
C60.3327 (3)0.6968 (3)0.4533 (3)0.0421 (6)
H60.28770.71990.36890.051*
C70.2826 (3)0.6069 (3)0.5677 (3)0.0367 (5)
C80.1513 (3)0.4645 (3)0.7068 (3)0.0368 (5)
C90.0363 (3)0.3784 (3)0.7351 (3)0.0408 (6)
H9A−0.04120.41780.66000.049*
H9B−0.03470.39560.81640.049*
C100.1380 (4)0.2072 (3)0.7546 (3)0.0448 (6)
C110.1221 (5)−0.0227 (4)0.7402 (6)0.0860 (14)
H11A0.1843−0.07690.82420.103*
H11B0.2040−0.04340.66480.103*
C12−0.0195 (6)−0.0757 (5)0.7394 (6)0.0900 (14)
H12A−0.0800−0.01960.65480.108*
H12B0.0329−0.18420.74180.108*
C13−0.1468 (9)−0.0548 (7)0.8527 (6)0.122 (2)
H13A−0.20190.05270.85010.147*
H13B−0.0889−0.11220.93720.147*
H13C−0.2332−0.09130.84520.147*
C140.4798 (4)0.2618 (4)0.9755 (3)0.0575 (8)
H14A0.55920.31280.94650.086*
H14B0.49650.19590.91850.086*
H14C0.50110.20101.06810.086*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0581 (2)0.0617 (2)0.0766 (3)−0.03898 (17)−0.00471 (16)−0.01173 (17)
S0.0443 (4)0.0525 (4)0.0332 (3)−0.0238 (3)−0.0022 (3)−0.0064 (3)
O10.0385 (9)0.0443 (10)0.0356 (9)−0.0182 (8)−0.0059 (7)−0.0078 (8)
O20.0436 (11)0.0429 (11)0.114 (2)−0.0170 (9)−0.0113 (12)−0.0243 (12)
O30.0443 (12)0.0509 (12)0.0865 (16)−0.0157 (10)−0.0153 (11)−0.0066 (11)
O40.0607 (13)0.0705 (14)0.0457 (11)−0.0259 (11)0.0001 (10)−0.0262 (10)
C10.0360 (12)0.0366 (12)0.0339 (12)−0.0145 (10)−0.0016 (10)−0.0087 (10)
C20.0341 (12)0.0333 (12)0.0356 (12)−0.0117 (10)−0.0021 (10)−0.0102 (10)
C30.0394 (13)0.0395 (13)0.0412 (14)−0.0160 (11)−0.0047 (10)−0.0123 (11)
C40.0376 (13)0.0365 (13)0.0513 (16)−0.0157 (11)−0.0002 (11)−0.0137 (11)
C50.0430 (14)0.0394 (14)0.0465 (15)−0.0165 (12)0.0019 (12)−0.0049 (12)
C60.0429 (14)0.0438 (14)0.0348 (13)−0.0143 (12)−0.0048 (11)−0.0060 (11)
C70.0335 (12)0.0342 (12)0.0409 (14)−0.0108 (10)−0.0047 (10)−0.0097 (10)
C80.0340 (12)0.0382 (13)0.0373 (13)−0.0142 (10)−0.0016 (10)−0.0084 (10)
C90.0366 (13)0.0446 (14)0.0449 (14)−0.0186 (11)−0.0029 (11)−0.0123 (11)
C100.0401 (14)0.0463 (15)0.0491 (15)−0.0210 (12)−0.0001 (12)−0.0089 (12)
C110.055 (2)0.0450 (19)0.158 (4)−0.0120 (16)−0.004 (2)−0.039 (2)
C120.075 (3)0.047 (2)0.151 (4)−0.0233 (18)−0.005 (3)−0.032 (2)
C130.138 (5)0.095 (4)0.140 (5)−0.073 (4)0.050 (4)−0.026 (3)
C140.0550 (18)0.0543 (18)0.0555 (18)−0.0142 (15)−0.0160 (14)−0.0075 (14)

Geometric parameters (Å, °)

Br—C41.899 (3)C6—C71.374 (4)
S—O41.492 (2)C6—H60.9300
S—C11.763 (3)C8—C91.486 (4)
S—C141.790 (3)C9—C101.509 (4)
O1—C81.375 (3)C9—H9A0.9700
O1—C71.375 (3)C9—H9B0.9700
O2—C101.323 (4)C11—C121.494 (6)
O2—C111.465 (4)C11—H11A0.9700
O3—C101.202 (4)C11—H11B0.9700
C1—C81.349 (4)C12—C131.465 (7)
C1—C21.448 (4)C12—H12A0.9700
C2—C31.396 (4)C12—H12B0.9700
C2—C71.397 (3)C13—H13A0.9600
C3—C41.376 (4)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.402 (4)C14—H14A0.9600
C5—C61.377 (4)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
O4—S—C1107.01 (13)C10—C9—H9A109.2
O4—S—C14106.32 (14)C8—C9—H9B109.2
C1—S—C1498.46 (14)C10—C9—H9B109.2
C8—O1—C7106.53 (19)H9A—C9—H9B107.9
C10—O2—C11117.2 (2)O3—C10—O2124.0 (3)
C8—C1—C2107.4 (2)O3—C10—C9125.6 (3)
C8—C1—S123.4 (2)O2—C10—C9110.4 (2)
C2—C1—S129.00 (19)O2—C11—C12107.7 (3)
C3—C2—C7119.3 (2)O2—C11—H11A110.2
C3—C2—C1136.1 (2)C12—C11—H11A110.2
C7—C2—C1104.6 (2)O2—C11—H11B110.2
C4—C3—C2116.8 (2)C12—C11—H11B110.2
C4—C3—H3121.6H11A—C11—H11B108.5
C2—C3—H3121.6C13—C12—C11114.4 (5)
C3—C4—C5123.3 (3)C13—C12—H12A108.7
C3—C4—Br118.7 (2)C11—C12—H12A108.7
C5—C4—Br117.9 (2)C13—C12—H12B108.7
C6—C5—C4119.8 (3)C11—C12—H12B108.7
C6—C5—H5120.1H12A—C12—H12B107.6
C4—C5—H5120.1C12—C13—H13A109.5
C7—C6—C5117.1 (2)C12—C13—H13B109.5
C7—C6—H6121.5H13A—C13—H13B109.5
C5—C6—H6121.5C12—C13—H13C109.5
O1—C7—C6125.9 (2)H13A—C13—H13C109.5
O1—C7—C2110.5 (2)H13B—C13—H13C109.5
C6—C7—C2123.6 (2)S—C14—H14A109.5
C1—C8—O1111.0 (2)S—C14—H14B109.5
C1—C8—C9133.2 (2)H14A—C14—H14B109.5
O1—C8—C9115.7 (2)S—C14—H14C109.5
C8—C9—C10112.2 (2)H14A—C14—H14C109.5
C8—C9—H9A109.2H14B—C14—H14C109.5
O4—S—C1—C8−134.5 (2)C3—C2—C7—O1178.3 (2)
C14—S—C1—C8115.5 (2)C1—C2—C7—O1−1.2 (3)
O4—S—C1—C240.5 (3)C3—C2—C7—C6−1.8 (4)
C14—S—C1—C2−69.5 (3)C1—C2—C7—C6178.8 (2)
C8—C1—C2—C3−178.6 (3)C2—C1—C8—O10.0 (3)
S—C1—C2—C35.7 (4)S—C1—C8—O1175.96 (17)
C8—C1—C2—C70.7 (3)C2—C1—C8—C9175.7 (3)
S—C1—C2—C7−174.95 (19)S—C1—C8—C9−8.3 (4)
C7—C2—C3—C41.3 (4)C7—O1—C8—C1−0.7 (3)
C1—C2—C3—C4−179.5 (3)C7—O1—C8—C9−177.3 (2)
C2—C3—C4—C50.6 (4)C1—C8—C9—C10−73.6 (4)
C2—C3—C4—Br179.65 (18)O1—C8—C9—C10102.0 (3)
C3—C4—C5—C6−2.0 (4)C11—O2—C10—O3−1.5 (5)
Br—C4—C5—C6178.9 (2)C11—O2—C10—C9179.2 (3)
C4—C5—C6—C71.5 (4)C8—C9—C10—O324.7 (4)
C8—O1—C7—C6−178.8 (2)C8—C9—C10—O2−156.0 (2)
C8—O1—C7—C21.2 (3)C10—O2—C11—C12166.2 (4)
C5—C6—C7—O1−179.7 (2)O2—C11—C12—C13−62.0 (6)
C5—C6—C7—C20.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11B···Cg1i0.973.023.720 (3)130
C12—H12B···Cg2i0.972.903.826 (3)161
C3—H3···O4ii0.932.543.424 (3)159
C5—H5···O3iii0.932.583.430 (4)152
C9—H9B···O4iv0.972.373.321 (3)167

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2167).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2250. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2397. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography