PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o450.
Published online 2009 February 4. doi:  10.1107/S1600536809001354
PMCID: PMC2968551

4-(4-Bromo­phen­yl)-6-(1H-indol-3-yl)-2,2′-bipyridine-5-carbonitrile

Abstract

In the title compound, C25H15BrN4, the two pyridine rings lie in a common plane [r.m.s. deviation = 0.023 (2) Å], whereas the bromo­phenyl and indole rings are twisted away from this plane by 52.82 (12) and 28.02 (10)°, respectively. The crystal structure is stabilized by inter­molecular N—H(...)N inter­actions.

Related literature

Compounds having an indole ring system have been shown to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]);

An external file that holds a picture, illustration, etc.
Object name is e-65-0o450-scheme1.jpg

Experimental

Crystal data

  • C25H15BrN4
  • M r = 451.32
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o450-efi1.jpg
  • a = 14.7393 (4) Å
  • b = 10.7465 (3) Å
  • c = 25.4251 (7) Å
  • V = 4027.23 (19) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.06 mm−1
  • T = 293 (2) K
  • 0.29 × 0.26 × 0.22 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.556, T max = 0.635
  • 47903 measured reflections
  • 5545 independent reflections
  • 3138 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.120
  • S = 0.99
  • 5545 reflections
  • 272 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001354/bt2842sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001354/bt2842Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PR thanks Dr Babu Varghese, SAIF, IIT–Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

Compounds having indole ring system are proved to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999). Against this background and to ascertain the detailed conformation, the crystal structure determination of the title compound has been carried out.

The ORTEP diagram of the title compound is shown in Fig. 1. The two pyridine rings lie in the same plane as can be seen from the dihedral angle of 3.61 (13)°. The bromophenyl and indole rings are twisted away from the bipyridine ring by 52.82 (12)° and 28.02 (10)°, respectively. The sum of the bond angles at N14 (360.0°) in the indole ring is in accordance with sp2 hybridization. The bond angle of C3—C16—N17 [178.4 (3)°] shows the linearity of the cyano group, a feature observed in carbonitrile compounds.

The crystal packing is controlled by C—H···N intermolecular interactions in addition to van der Waals forces. Atom N14 (x, y, z) donates one proton to N17 at (-x + 1,-y,-z + 1) which connects the molecules to form a R22 (16) dimer (Bernstein et al., 1995).

Experimental

A mixture of 3-cyanoacetyl indole (1 mmol), 4-bromobenzaldehyde (1 mmol) and 2-acetyl pyridine (1 mmol) in 5 gm of ammonium acetate under neat condition was refluxed 6–8 hrs. After the completion of the reaction (as monitored by TLC), it was poured into water and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under vacuo. The crude product was chromatographed and isolated in 80% yield (90:10, petroleum ether: ethyl acetate) and recrystallized in ethanol.

Refinement

H atoms were positioned geometrically (N—H=0.86 Å, and C—H=0.93 Å) and allowed to ride on their parent atoms, with 1.2Ueq(C,N).

Figures

Fig. 1.
Perspective view of the molecule showing the displacement ellipsoids at 50% probability level. The H atoms are shown as small circles of arbitrary radii.
Fig. 2.
The crystal packing of the molecules viewed down the b axis. H atoms not involved in hydrogen bonding are omitted for clarity.

Crystal data

C25H15BrN4F(000) = 1824
Mr = 451.32Dx = 1.489 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5842 reflections
a = 14.7393 (4) Åθ = 1.6–29.4°
b = 10.7465 (3) ŵ = 2.06 mm1
c = 25.4251 (7) ÅT = 293 K
V = 4027.23 (19) Å3Block, colorless
Z = 80.29 × 0.26 × 0.22 mm

Data collection

Bruker Kappa APEXII area-detector diffractometer5545 independent reflections
Radiation source: fine-focus sealed tube3138 reflections with I > 2σ(I)
graphiteRint = 0.057
ω and [var phi] scansθmax = 29.4°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −17→20
Tmin = 0.556, Tmax = 0.635k = −14→14
47903 measured reflectionsl = −35→35

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.120w = 1/[σ2(Fo2) + (0.0524P)2 + 1.6981P] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
5545 reflectionsΔρmax = 0.42 e Å3
272 parametersΔρmin = −0.58 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.24258 (2)0.41762 (4)0.228490 (11)0.07539 (16)
N10.40577 (13)0.47359 (16)0.56512 (7)0.0397 (4)
C20.41263 (15)0.3612 (2)0.54258 (9)0.0385 (5)
C30.38681 (16)0.3440 (2)0.48975 (9)0.0399 (5)
C40.35912 (16)0.4449 (2)0.45926 (9)0.0391 (5)
C50.35655 (16)0.5595 (2)0.48331 (9)0.0426 (5)
H50.34060.62980.46410.051*
C60.37776 (15)0.5701 (2)0.53619 (9)0.0387 (5)
C70.44948 (15)0.2632 (2)0.57570 (9)0.0400 (5)
C80.44917 (15)0.2595 (2)0.63245 (9)0.0402 (5)
C90.41165 (18)0.3326 (2)0.67203 (10)0.0490 (6)
H90.37690.40210.66370.059*
C100.4265 (2)0.3010 (3)0.72342 (10)0.0591 (7)
H100.40220.35030.74990.071*
C110.4771 (2)0.1972 (3)0.73681 (11)0.0640 (8)
H110.48610.17830.77210.077*
C120.5139 (2)0.1223 (3)0.69920 (11)0.0596 (7)
H120.54730.05210.70820.072*
C130.49973 (16)0.1545 (2)0.64702 (10)0.0463 (6)
N140.52963 (15)0.09858 (18)0.60195 (9)0.0533 (5)
H140.56260.03270.60070.064*
C150.49954 (16)0.1625 (2)0.55983 (10)0.0485 (6)
H150.51110.14130.52500.058*
C160.38817 (18)0.2223 (2)0.46641 (10)0.0480 (6)
N170.38837 (19)0.1271 (2)0.44684 (10)0.0694 (7)
C180.33250 (16)0.4340 (2)0.40326 (9)0.0403 (5)
C190.26769 (17)0.3498 (2)0.38682 (10)0.0504 (6)
H190.24130.29600.41100.060*
C200.24170 (18)0.3450 (2)0.33465 (11)0.0530 (7)
H200.19820.28790.32370.064*
C210.28003 (18)0.4241 (2)0.29947 (10)0.0481 (6)
C220.34485 (19)0.5078 (3)0.31444 (10)0.0562 (7)
H220.37120.56080.28990.067*
C230.37058 (19)0.5126 (2)0.36651 (10)0.0523 (6)
H230.41430.56970.37700.063*
C240.36885 (16)0.6912 (2)0.56355 (9)0.0410 (5)
N250.33924 (15)0.78608 (18)0.53415 (8)0.0516 (5)
C260.32987 (19)0.8957 (2)0.55752 (12)0.0562 (7)
H260.31010.96240.53730.067*
C270.3474 (2)0.9165 (2)0.60946 (12)0.0595 (7)
H270.33880.99470.62430.071*
C280.3779 (3)0.8194 (3)0.63905 (12)0.0756 (9)
H280.39080.83040.67460.091*
C290.3895 (2)0.7051 (2)0.61584 (10)0.0624 (8)
H290.41100.63810.63530.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0741 (2)0.1126 (3)0.03942 (16)0.02193 (18)−0.00909 (13)0.00200 (15)
N10.0451 (11)0.0356 (10)0.0385 (10)0.0036 (8)0.0000 (8)0.0014 (8)
C20.0390 (13)0.0360 (12)0.0403 (12)0.0018 (9)0.0016 (10)0.0024 (10)
C30.0419 (13)0.0357 (12)0.0420 (13)0.0005 (10)0.0031 (10)−0.0014 (10)
C40.0422 (13)0.0380 (12)0.0370 (12)0.0002 (10)0.0033 (10)0.0030 (10)
C50.0528 (14)0.0342 (12)0.0408 (13)0.0033 (10)−0.0002 (10)0.0050 (10)
C60.0411 (12)0.0357 (11)0.0395 (12)0.0005 (9)0.0029 (10)0.0020 (10)
C70.0410 (13)0.0346 (11)0.0444 (13)0.0009 (10)−0.0015 (10)0.0008 (10)
C80.0428 (13)0.0337 (11)0.0442 (13)−0.0045 (10)−0.0066 (10)0.0054 (10)
C90.0578 (16)0.0416 (13)0.0477 (14)−0.0040 (12)0.0001 (12)0.0020 (11)
C100.0737 (19)0.0608 (17)0.0427 (15)−0.0128 (14)−0.0027 (13)0.0005 (12)
C110.074 (2)0.0704 (19)0.0475 (15)−0.0201 (16)−0.0152 (14)0.0149 (14)
C120.0648 (18)0.0527 (15)0.0613 (17)−0.0053 (13)−0.0194 (14)0.0189 (14)
C130.0463 (14)0.0390 (13)0.0537 (15)−0.0028 (10)−0.0091 (12)0.0059 (11)
N140.0550 (13)0.0400 (11)0.0648 (14)0.0130 (10)−0.0099 (11)0.0043 (10)
C150.0511 (15)0.0430 (13)0.0513 (14)0.0073 (11)−0.0027 (12)−0.0010 (11)
C160.0553 (15)0.0438 (14)0.0450 (14)0.0084 (11)−0.0056 (11)−0.0008 (11)
N170.0931 (19)0.0476 (13)0.0675 (16)0.0163 (12)−0.0173 (14)−0.0139 (12)
C180.0479 (14)0.0375 (12)0.0354 (11)0.0036 (10)0.0013 (10)0.0011 (10)
C190.0563 (16)0.0490 (14)0.0458 (14)−0.0095 (12)−0.0059 (12)0.0126 (11)
C200.0556 (16)0.0533 (15)0.0502 (15)−0.0060 (12)−0.0131 (12)0.0009 (12)
C210.0544 (15)0.0538 (14)0.0360 (12)0.0118 (13)−0.0038 (11)0.0011 (11)
C220.0705 (18)0.0571 (16)0.0412 (14)−0.0020 (14)0.0107 (13)0.0090 (12)
C230.0626 (17)0.0472 (14)0.0472 (14)−0.0133 (12)0.0042 (12)0.0015 (12)
C240.0433 (13)0.0354 (12)0.0442 (13)0.0003 (10)0.0044 (10)0.0021 (10)
N250.0663 (14)0.0373 (10)0.0511 (13)0.0095 (10)−0.0024 (11)−0.0019 (9)
C260.0650 (18)0.0387 (13)0.0648 (18)0.0103 (12)0.0007 (14)0.0007 (12)
C270.0716 (18)0.0421 (14)0.0647 (18)0.0018 (13)0.0102 (14)−0.0117 (13)
C280.122 (3)0.0565 (18)0.0484 (17)0.0025 (18)−0.0037 (17)−0.0114 (14)
C290.099 (2)0.0438 (14)0.0446 (15)0.0048 (14)−0.0079 (15)0.0001 (12)

Geometric parameters (Å, °)

Br1—C211.888 (2)N14—C151.347 (3)
N1—C61.336 (3)N14—H140.8600
N1—C21.341 (3)C15—H150.9300
C2—C31.408 (3)C16—N171.138 (3)
C2—C71.453 (3)C18—C231.379 (3)
C3—C41.394 (3)C18—C191.381 (3)
C3—C161.437 (3)C19—C201.382 (3)
C4—C51.376 (3)C19—H190.9300
C4—C181.482 (3)C20—C211.357 (4)
C5—C61.385 (3)C20—H200.9300
C5—H50.9300C21—C221.367 (4)
C6—C241.481 (3)C22—C231.378 (3)
C7—C151.371 (3)C22—H220.9300
C7—C81.443 (3)C23—H230.9300
C8—C91.391 (3)C24—N251.338 (3)
C8—C131.403 (3)C24—C291.372 (3)
C9—C101.368 (3)N25—C261.327 (3)
C9—H90.9300C26—C271.364 (4)
C10—C111.383 (4)C26—H260.9300
C10—H100.9300C27—C281.363 (4)
C11—C121.363 (4)C27—H270.9300
C11—H110.9300C28—C291.373 (4)
C12—C131.387 (3)C28—H280.9300
C12—H120.9300C29—H290.9300
C13—N141.367 (3)
C6—N1—C2119.15 (19)C13—N14—H14125.2
N1—C2—C3120.32 (19)N14—C15—C7110.2 (2)
N1—C2—C7115.66 (19)N14—C15—H15124.9
C3—C2—C7124.0 (2)C7—C15—H15124.9
C4—C3—C2120.5 (2)N17—C16—C3178.4 (3)
C4—C3—C16118.8 (2)C23—C18—C19118.5 (2)
C2—C3—C16120.6 (2)C23—C18—C4119.7 (2)
C5—C4—C3117.2 (2)C19—C18—C4121.7 (2)
C5—C4—C18119.4 (2)C18—C19—C20120.5 (2)
C3—C4—C18123.4 (2)C18—C19—H19119.8
C4—C5—C6119.9 (2)C20—C19—H19119.8
C4—C5—H5120.0C21—C20—C19119.6 (2)
C6—C5—H5120.0C21—C20—H20120.2
N1—C6—C5122.7 (2)C19—C20—H20120.2
N1—C6—C24116.8 (2)C20—C21—C22121.3 (2)
C5—C6—C24120.5 (2)C20—C21—Br1119.0 (2)
C15—C7—C8105.9 (2)C22—C21—Br1119.64 (19)
C15—C7—C2127.0 (2)C21—C22—C23119.0 (2)
C8—C7—C2126.7 (2)C21—C22—H22120.5
C9—C8—C13118.3 (2)C23—C22—H22120.5
C9—C8—C7135.1 (2)C22—C23—C18121.1 (2)
C13—C8—C7106.5 (2)C22—C23—H23119.5
C10—C9—C8119.1 (2)C18—C23—H23119.5
C10—C9—H9120.4N25—C24—C29122.0 (2)
C8—C9—H9120.4N25—C24—C6115.9 (2)
C9—C10—C11121.4 (3)C29—C24—C6122.1 (2)
C9—C10—H10119.3C26—N25—C24117.4 (2)
C11—C10—H10119.3N25—C26—C27124.0 (2)
C12—C11—C10121.2 (3)N25—C26—H26118.0
C12—C11—H11119.4C27—C26—H26118.0
C10—C11—H11119.4C28—C27—C26118.1 (2)
C11—C12—C13117.6 (3)C28—C27—H27120.9
C11—C12—H12121.2C26—C27—H27120.9
C13—C12—H12121.2C27—C28—C29119.2 (3)
N14—C13—C12130.1 (2)C27—C28—H28120.4
N14—C13—C8107.7 (2)C29—C28—H28120.4
C12—C13—C8122.2 (2)C24—C29—C28119.1 (3)
C15—N14—C13109.6 (2)C24—C29—H29120.4
C15—N14—H14125.2C28—C29—H29120.4
C6—N1—C2—C3−2.8 (3)C7—C8—C13—C12179.7 (2)
C6—N1—C2—C7175.9 (2)C12—C13—N14—C15−179.7 (3)
N1—C2—C3—C44.0 (3)C8—C13—N14—C15−0.7 (3)
C7—C2—C3—C4−174.6 (2)C13—N14—C15—C70.5 (3)
N1—C2—C3—C16−175.8 (2)C8—C7—C15—N14−0.2 (3)
C7—C2—C3—C165.6 (4)C2—C7—C15—N14173.8 (2)
C2—C3—C4—C5−1.3 (3)C4—C3—C16—N17−4(11)
C16—C3—C4—C5178.4 (2)C2—C3—C16—N17176 (100)
C2—C3—C4—C18179.0 (2)C5—C4—C18—C2350.8 (3)
C16—C3—C4—C18−1.3 (3)C3—C4—C18—C23−129.5 (3)
C3—C4—C5—C6−2.3 (3)C5—C4—C18—C19−126.8 (3)
C18—C4—C5—C6177.4 (2)C3—C4—C18—C1952.9 (3)
C2—N1—C6—C5−1.0 (3)C23—C18—C19—C20−0.1 (4)
C2—N1—C6—C24178.2 (2)C4—C18—C19—C20177.5 (2)
C4—C5—C6—N13.6 (4)C18—C19—C20—C21−0.3 (4)
C4—C5—C6—C24−175.5 (2)C19—C20—C21—C220.8 (4)
N1—C2—C7—C15−149.1 (2)C19—C20—C21—Br1−179.2 (2)
C3—C2—C7—C1529.6 (4)C20—C21—C22—C23−0.8 (4)
N1—C2—C7—C823.7 (3)Br1—C21—C22—C23179.1 (2)
C3—C2—C7—C8−157.7 (2)C21—C22—C23—C180.4 (4)
C15—C7—C8—C9−179.9 (3)C19—C18—C23—C220.0 (4)
C2—C7—C8—C96.1 (4)C4—C18—C23—C22−177.7 (2)
C15—C7—C8—C13−0.3 (3)N1—C6—C24—N25−178.9 (2)
C2—C7—C8—C13−174.2 (2)C5—C6—C24—N250.3 (3)
C13—C8—C9—C101.1 (4)N1—C6—C24—C291.0 (4)
C7—C8—C9—C10−179.3 (3)C5—C6—C24—C29−179.8 (3)
C8—C9—C10—C11−0.8 (4)C29—C24—N25—C26−0.3 (4)
C9—C10—C11—C12−0.1 (4)C6—C24—N25—C26179.5 (2)
C10—C11—C12—C130.7 (4)C24—N25—C26—C27−0.9 (4)
C11—C12—C13—N14178.6 (3)N25—C26—C27—C281.2 (5)
C11—C12—C13—C8−0.3 (4)C26—C27—C28—C29−0.2 (5)
C9—C8—C13—N14−179.7 (2)N25—C24—C29—C281.2 (4)
C7—C8—C13—N140.6 (3)C6—C24—C29—C28−178.7 (3)
C9—C8—C13—C12−0.6 (4)C27—C28—C29—C24−0.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N14—H14···N17i0.862.222.980 (3)147

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2842).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem.64, 1369–1371.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography