PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m320.
Published online 2009 February 25. doi:  10.1107/S1600536809005868
PMCID: PMC2968545

(2′-Amino-4,4′-bi-1,3-thia­zol-2-aminium-κ2 N,N′)aqua­[citrato(4−)-κ3 O,O′,O′′)chromium(III) dihydrate

Abstract

In the title compound, [Cr(C6H7N4S2)(C6H4O7)(H2O)]·2H2O, the CrIII atom is in a distorted octa­hedral environment, coordinated by one water mol­ecule, two N atoms from a protonated diamino­bithia­zole ligand and three O atoms from a citrate(4−) anion. The complex is zwitterionic, with the H atom from the uncoordinated carboxyl­ate group of the citrate anion transferred to one amino group of the diamino­bithia­zole ligand. O—H(...)O and N—H(...)O hydrogen bonds link the complexes into layers including the two uncoordinated water mol­ecules.

Related literature

For general background concerning transition-metal complexes of diamino­bithia­zole, see: Waring (1981 [triangle]); Fisher et al. (1985 [triangle]). For related structures, see: Liu & Xu (2004 [triangle]); Luo et al. (2004 [triangle]); Liu et al. (2004 [triangle], 2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m320-scheme1.jpg

Experimental

Crystal data

  • [Cr(C6H7N4S2)(C6H4O7)(H2O)]·2H2O
  • M r = 493.42
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m320-efi1.jpg
  • a = 7.7438 (15) Å
  • b = 11.193 (2) Å
  • c = 12.057 (2) Å
  • α = 72.350 (3)°
  • β = 77.090 (2)°
  • γ = 82.273 (3)°
  • V = 968.2 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.87 mm−1
  • T = 295 K
  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.810, T max = 0.870
  • 5085 measured reflections
  • 3373 independent reflections
  • 2273 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.169
  • S = 1.06
  • 3373 reflections
  • 263 parameters
  • H-atom parameters constrained
  • Δρmax = 0.89 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005868/bi2321sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005868/bi2321Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (AB0448).

supplementary crystallographic information

Comment

Transition-metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential application in some fields: for example, a CoII complex and a NiII complex with DABT have been found to be effective inhibitors of DNA synthesis of tumor cell (Waring, 1981; Fisher et al., 1985). The title CrIII complex forms part of a series of structural investigations of metal complexes with DABT.

The complex (Figure 1) displays a distorted octahedral coordination geometry formed by a protonated DABT molecule, one citrate anion and one coordinated water molecule. The citrate anion coordinates to CrIII in a tridentate manner through O atoms of two carboxyl groups and one hydroxyl group. The complex is zwitterionic, with the H atom from the non-coordinated carboxyl group of the citrate anion transferred to one of the amino groups of the DABT ligand.

The thiazole rings of DABT are approximately coplanar (dihedal angle 3.3 (3)°). The C—N(thiazole ring) [N23—C26 = 1.321 (6), N21—C23 = 1.328 (6) Å] and C—N(amino) bonds [N24—C26 = 1.328 (7), N22—C23 1.314 (7) Å] are approximately equal, suggesting the existence of electron delocalization between amino group and thiazole rings. The central C—C bond distance of 1.456 (7) Å in the DABT ligand suggests that a C—C single bond is formed between the sp2 hybridised C atoms of the thiazole rings.

Extensive hydrogen bonding occurs in the crystal. All lattice water molecules are involved in hydrogen bonding as shown in Fig. 1 and Fig. 2. The amino groups of DABT are hydrogen bonded to adjacent coordinated oxygen or lattice water (Fig. 1) via N—H···O hydrogen bonds to form a layered structure parallel to the (011) planes.

Experimental

An ethanol solution (20 ml) containing DABT (0.20 g 1 mmol) and CrCl3.6H2O (0.27 g 1 mmol) was mixed with an aqueous solution (10 ml) of citric acid (0.19 g 1 mmol) and NaOH (0.12 g 3 mmol). The mixture was refluxed for 6 h. After cooling to room temperature the solution was filtered. Single crystals were obtained from the filtrate after 2 d.

Refinement

H atoms on C atoms were placed in calculated positions, with C—H = 0.93 Å (aromatic) or C—H = 0.97 (methylene), and were included in the final cycles of refinement in riding mode with Uiso(H) = 1.2Ueq(C). H atoms of the amino group of DABT, coordinated water and lattice water were located in difference Fourier maps and included in the final cycles of refinement in riding mode with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O). H atoms of the ammonium group were visible in a difference Fourier map, but placed geometrically and allowed to rotate about the C—N bond during the final cycles of refinement.

Figures

Fig. 1.
The molecular structure with 30% probability displacement ellipsoids for non-H atoms. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) x - 1, y, z].
Fig. 2.
Packing diagram showing hydrogen bonding between CrIII complex molecules.

Crystal data

[Cr(C6H7N4S2)(C6H4O7)(H2O)]·2H2OZ = 2
Mr = 493.42F(000) = 506
Triclinic, P1Dx = 1.693 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7438 (15) ÅCell parameters from 3270 reflections
b = 11.193 (2) Åθ = 2.0–25.0°
c = 12.057 (2) ŵ = 0.87 mm1
α = 72.350 (3)°T = 295 K
β = 77.090 (2)°Prism, red
γ = 82.273 (3)°0.25 × 0.20 × 0.15 mm
V = 968.2 (3) Å3

Data collection

Bruker APEXII CCD diffractometer3373 independent reflections
Radiation source: fine-focus sealed tube2273 reflections with I > 2σ(I)
graphiteRint = 0.034
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.810, Tmax = 0.870k = −10→13
5085 measured reflectionsl = −10→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.076P)2 + 0.5014P] where P = (Fo2 + 2Fc2)/3
3373 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = −0.64 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cr0.32133 (11)0.27404 (7)0.65363 (7)0.0290 (3)
O10.5836 (5)0.2674 (3)0.5998 (3)0.0418 (10)
H1A0.65730.21550.63530.063*
H1B0.61720.30880.52710.063*
O110.3172 (5)0.4582 (3)0.6053 (3)0.0352 (9)
O120.2939 (6)0.6489 (3)0.6263 (3)0.0494 (11)
O130.0634 (5)0.2891 (3)0.7116 (3)0.0360 (9)
O14−0.1244 (5)0.3834 (4)0.8348 (3)0.0443 (10)
O150.3302 (4)0.2688 (3)0.8123 (3)0.0306 (8)
O160.1701 (7)0.1124 (5)1.1262 (5)0.0875 (19)
O170.0189 (6)0.1239 (4)0.9877 (4)0.0590 (12)
N210.3201 (6)0.0846 (4)0.6822 (4)0.0326 (10)
N220.3901 (7)−0.0065 (4)0.8689 (4)0.0515 (14)
H22A0.39820.07240.84810.062*
H22B0.3924−0.04520.93990.062*
N230.2795 (6)0.2683 (4)0.4916 (4)0.0327 (10)
N240.2762 (7)0.4763 (4)0.3704 (4)0.0496 (13)
H24A0.26570.49520.43830.060*
H24B0.19410.52210.33100.060*
H24C0.38370.49310.32670.060*
C110.1840 (7)0.3480 (5)0.8508 (5)0.0319 (12)
C120.2369 (8)0.4857 (5)0.8038 (5)0.0369 (13)
H12A0.13900.53930.83240.044*
H12B0.33770.49200.83660.044*
C130.2847 (7)0.5345 (5)0.6699 (5)0.0334 (13)
C140.0249 (7)0.3398 (5)0.7979 (5)0.0328 (13)
C150.1365 (8)0.3097 (5)0.9857 (5)0.0418 (14)
H15A0.23140.32911.01660.050*
H15B0.02930.35831.01060.050*
C160.1074 (8)0.1713 (5)1.0371 (5)0.0407 (14)
C210.2760 (7)0.0473 (5)0.5913 (5)0.0342 (13)
C220.2699 (9)−0.0764 (5)0.6137 (5)0.0492 (16)
H220.2430−0.11470.56170.059*
C230.3463 (8)−0.0147 (5)0.7724 (5)0.0377 (13)
C240.2508 (8)0.1495 (5)0.4864 (5)0.0382 (14)
C250.2033 (9)0.1473 (5)0.3873 (5)0.0497 (16)
H250.17840.07530.37250.060*
C260.2541 (8)0.3550 (5)0.3931 (5)0.0380 (13)
S210.3177 (2)−0.15618 (13)0.75051 (14)0.0481 (4)
S220.1944 (2)0.29610 (15)0.29087 (14)0.0514 (5)
O1W−0.4052 (7)0.2295 (5)0.9370 (5)0.092 (2)
H1WB−0.48590.26090.89830.139*
H1WA−0.31240.28780.91100.139*
O2W0.8198 (6)0.1215 (4)0.7251 (6)0.092 (2)
H2WA0.91680.17530.70390.138*
H2WB0.84000.05850.78510.138*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cr0.0396 (5)0.0212 (4)0.0259 (5)−0.0049 (4)−0.0082 (4)−0.0039 (3)
O10.041 (2)0.042 (2)0.036 (2)−0.0051 (18)−0.0061 (18)−0.0015 (18)
O110.054 (2)0.0220 (18)0.029 (2)−0.0064 (16)−0.0078 (17)−0.0050 (15)
O120.080 (3)0.021 (2)0.038 (2)−0.0078 (19)0.002 (2)−0.0038 (17)
O130.039 (2)0.037 (2)0.034 (2)−0.0071 (17)−0.0090 (17)−0.0099 (17)
O140.039 (2)0.047 (2)0.042 (2)−0.0004 (19)−0.0046 (19)−0.0078 (19)
O150.036 (2)0.0276 (18)0.026 (2)−0.0044 (16)−0.0078 (16)−0.0032 (15)
O160.103 (4)0.067 (3)0.077 (4)−0.022 (3)−0.049 (3)0.031 (3)
O170.081 (3)0.045 (3)0.052 (3)−0.027 (2)−0.011 (2)−0.006 (2)
N210.046 (3)0.022 (2)0.029 (3)−0.0060 (19)−0.008 (2)−0.0043 (18)
N220.080 (4)0.034 (3)0.037 (3)−0.008 (3)−0.024 (3)0.004 (2)
N230.047 (3)0.024 (2)0.026 (2)−0.002 (2)−0.008 (2)−0.0060 (18)
N240.076 (4)0.033 (3)0.041 (3)−0.003 (2)−0.025 (3)−0.002 (2)
C110.041 (3)0.025 (3)0.030 (3)−0.004 (2)−0.008 (2)−0.007 (2)
C120.052 (4)0.027 (3)0.031 (3)−0.007 (3)−0.007 (3)−0.007 (2)
C130.043 (3)0.021 (3)0.035 (3)−0.005 (2)−0.005 (3)−0.007 (2)
C140.040 (3)0.024 (3)0.030 (3)−0.007 (2)−0.005 (2)−0.001 (2)
C150.058 (4)0.036 (3)0.030 (3)−0.010 (3)−0.005 (3)−0.006 (2)
C160.045 (3)0.043 (3)0.029 (3)−0.008 (3)−0.002 (3)−0.005 (3)
C210.047 (3)0.024 (3)0.033 (3)−0.002 (2)−0.005 (2)−0.012 (2)
C220.072 (4)0.033 (3)0.047 (4)−0.007 (3)−0.011 (3)−0.016 (3)
C230.049 (4)0.022 (3)0.040 (4)−0.001 (2)−0.008 (3)−0.008 (2)
C240.051 (4)0.030 (3)0.037 (3)−0.005 (3)−0.009 (3)−0.012 (2)
C250.080 (5)0.034 (3)0.043 (4)−0.014 (3)−0.020 (3)−0.012 (3)
C260.051 (4)0.034 (3)0.030 (3)−0.006 (3)−0.012 (3)−0.006 (2)
S210.0678 (11)0.0221 (7)0.0491 (10)−0.0039 (7)−0.0075 (8)−0.0049 (6)
S220.0758 (12)0.0484 (10)0.0363 (9)−0.0050 (8)−0.0240 (8)−0.0117 (7)
O1W0.072 (3)0.090 (4)0.092 (4)−0.034 (3)−0.045 (3)0.043 (3)
O2W0.060 (3)0.045 (3)0.164 (6)−0.012 (2)−0.038 (3)−0.005 (3)

Geometric parameters (Å, °)

Cr—O151.912 (3)N24—H24B0.890
Cr—O111.963 (3)N24—H24C0.890
Cr—O131.966 (4)C11—C151.522 (7)
Cr—O11.988 (4)C11—C141.533 (7)
Cr—N212.044 (4)C11—C121.549 (7)
Cr—N232.071 (4)C12—C131.514 (7)
O1—H1A0.846C12—H12A0.970
O1—H1B0.858C12—H12B0.970
O11—C131.287 (6)C15—C161.512 (7)
O12—C131.233 (6)C15—H15A0.970
O13—C141.292 (6)C15—H15B0.970
O14—C141.234 (6)C21—C221.334 (7)
O15—C111.424 (6)C21—C241.456 (7)
O16—C161.241 (7)C22—S211.716 (6)
O17—C161.256 (7)C22—H220.9300
N21—C231.328 (6)C23—S211.733 (6)
N21—C211.405 (7)C24—C251.334 (8)
N22—C231.314 (7)C25—S221.721 (6)
N22—H22A0.849C25—H250.9300
N22—H22B0.837C26—S221.731 (6)
N23—C261.321 (6)O1W—H1WB0.839
N23—C241.399 (7)O1W—H1WA0.971
N24—C261.328 (7)O2W—H2WA0.966
N24—H24A0.890O2W—H2WB0.870
O15—Cr—O1190.51 (14)C13—C12—H12A108.6
O15—Cr—O1383.15 (15)C11—C12—H12A108.6
O11—Cr—O1388.35 (15)C13—C12—H12B108.6
O15—Cr—O194.33 (15)C11—C12—H12B108.6
O11—Cr—O188.97 (15)H12A—C12—H12B107.6
O13—Cr—O1176.30 (16)O12—C13—O11121.9 (5)
O15—Cr—N2196.93 (16)O12—C13—C12117.5 (5)
O11—Cr—N21172.51 (16)O11—C13—C12120.6 (4)
O13—Cr—N2191.64 (16)O14—C14—O13124.7 (5)
O1—Cr—N2191.36 (16)O14—C14—C11120.7 (5)
O15—Cr—N23172.24 (16)O13—C14—C11114.5 (5)
O11—Cr—N2393.22 (15)C16—C15—C11112.2 (5)
O13—Cr—N2390.15 (17)C16—C15—H15A109.2
O1—Cr—N2392.53 (17)C11—C15—H15A109.2
N21—Cr—N2379.28 (16)C16—C15—H15B109.2
Cr—O1—H1A125.5C11—C15—H15B109.2
Cr—O1—H1B113.5H15A—C15—H15B107.9
H1A—O1—H1B119.2O16—C16—O17124.3 (6)
C13—O11—Cr129.5 (3)O16—C16—C15118.1 (6)
C14—O13—Cr111.3 (3)O17—C16—C15117.6 (5)
C11—O15—Cr107.2 (3)C22—C21—N21114.6 (5)
C23—N21—C21110.7 (4)C22—C21—C24130.5 (5)
C23—N21—Cr133.6 (4)N21—C21—C24114.8 (4)
C21—N21—Cr115.7 (3)C21—C22—S21111.5 (5)
C23—N22—H22A97.9C21—C22—H22124.2
C23—N22—H22B143.4S21—C22—H22124.2
H22A—N22—H22B117.1N22—C23—N21123.3 (5)
C26—N23—C24110.4 (5)N22—C23—S21123.2 (4)
C26—N23—Cr134.0 (4)N21—C23—S21113.5 (4)
C24—N23—Cr115.1 (3)C25—C24—N23115.5 (5)
C26—N24—H24A109.5C25—C24—C21130.1 (5)
C26—N24—H24B109.5N23—C24—C21114.4 (5)
H24A—N24—H24B109.5C24—C25—S22110.7 (4)
C26—N24—H24C109.5C24—C25—H25124.7
H24A—N24—H24C109.5S22—C25—H25124.7
H24B—N24—H24C109.5N23—C26—N24124.5 (5)
O15—C11—C15110.0 (4)N23—C26—S22113.8 (4)
O15—C11—C14109.6 (4)N24—C26—S22121.7 (4)
C15—C11—C14110.7 (4)C22—S21—C2389.6 (3)
O15—C11—C12108.6 (4)C25—S22—C2689.6 (3)
C15—C11—C12110.0 (4)H1WB—O1W—H1WA108.0
C14—C11—C12107.9 (4)H2WA—O2W—H2WB107.4
C13—C12—C11114.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O2W0.851.852.689 (7)171
O1—H1B···O12i0.861.762.597 (5)164
O1W—H1WB···O15ii0.841.922.718 (7)159
O1W—H1WA···O140.971.832.782 (7)168
O2W—H2WA···O13iii0.971.852.781 (6)160
O2W—H2WB···O16iv0.871.892.690 (8)152
N22—H22A···O150.852.122.942 (6)162
N22—H22B···O1Wv0.842.152.867 (7)144
N24—H24A···O110.892.052.864 (6)152
N24—H24B···O14vi0.892.112.901 (6)148

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) x+1, y, z; (iv) −x+1, −y, −z+2; (v) −x, −y, −z+2; (vi) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2321).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Winsonsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fisher, L. M., Kurod, R. & Sakai, T. (1985). Biochemistry, 24, 3199–3207. [PubMed]
  • Liu, B.-X., Ge, H.-Q. & Xu, D.-J. (2006). Acta Cryst. E62, m1439–m1441.
  • Liu, B.-X., Tian, Y.-G. & Xu, D.-J. (2004). Acta Cryst. E60, m1453–m1455.
  • Liu, B.-X. & Xu, D.-J. (2004). Acta Cryst. C60, m137–m139. [PubMed]
  • Luo, Y., Xu, D. J., Wu, J. Y. & Chiang, M. Y. (2004). J. Coord. Chem.57, 1125–1130.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Waring, M. J. (1981). Annu. Rev. Biochem.50, 159–192. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography