PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o650.
Published online 2009 February 28. doi:  10.1107/S1600536809006862
PMCID: PMC2968534

3α-Hydr­oxy-N-(3-hydroxy­prop­yl)-5β-cholan-24-amide

Abstract

The title compound, C27H47NO3, is a (3-hydroxy­prop­yl)amide derivative of naturally occurring enanti­opure lithocholic acid (3α-hydr­oxy-5β-cholan-24-oic acid). The mol­ecule contains four fused rings: three six-membered rings in chair conformations and one five-membered ring in a half-chair form. The two terminal six-membered rings are cis-fused, while other rings are trans-fused. The structure contains an intra­molecular O—H(...)O hydrogen bond and a similar hydrogen-bond framework to the corresponding deoxy­cholic and chenodeoxy­cholic acid derivatives. Inter­molecular O—H(...)O and N—H(...)O inter­actions are also present in the crystal. This compound seems to have at least two polymorphic forms from a comparison of the X-ray powder pattern simulated from the present structure of the title compound and that previously obtained for the powder sample.

Related literature

For general background, see: Tamminen et al. (2000 [triangle]); Valkonen et al. (2004 [triangle]); Valkonen (2008 [triangle]). For related structures, see: Valkonen et al. (2007 [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o650-scheme1.jpg

Experimental

Crystal data

  • C27H47NO3
  • M r = 433.66
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o650-efi1.jpg
  • a = 11.4462 (5) Å
  • b = 7.5998 (3) Å
  • c = 14.3286 (6) Å
  • β = 102.055 (2)°
  • V = 1218.94 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 123 K
  • 0.30 × 0.10 × 0.06 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: none
  • 9113 measured reflections
  • 3155 independent reflections
  • 2207 reflections with I > 2σ(I)
  • R int = 0.091

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.135
  • S = 1.05
  • 3155 reflections
  • 289 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: COLLECT (Bruker, 2008 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR2002 (Burla et al., 2003 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and Mercury (Macrae et al., 2006 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006862/is2393sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006862/is2393Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BSc student Mirka Kaariste is gratefully acknowledged for her help with the synthesis of the title compound. AV is grateful to Academy Professor Kari Rissanen and the Academy of Finland for funding.

supplementary crystallographic information

Comment

The title compound is a lithocholic acid (LCA) derivative which was supposed to be a potential organogelating agent (Valkonen et al., 2004). However, in gelation studies these properties were found to be too weak for utilization in any purposes. Although single crystals of analogous deoxycholic (DCA, 3α,12α-dihydroxy-5β-cholan-24-oic acid) and chenodeoxycholic (CDCA, 3α,7α-dihydroxy-5β-cholan-24-oic acid) acid amide derivatives were easily obtained during gelation tests (Valkonen et al., 2004; Valkonen et al., 2007; Valkonen et al., 2008), the crystals of the title compound were very thin needles and far too small for crystallographic data collection. Methanol, which is unacceptably good solvent for the title compound and analogues in gel formation (Valkonen et al., 2004), showed to be a good solvent for growing of reasonable size crystals of the title compound for X-ray diffraction studies. The molecular structure of the title compound is shown in Fig. 1.

The simulated powder diffraction pattern by Mercury (Macrae et al., 2006) from the single crystals of title compound in Fig. 2 is not congruent with the powdery sample pattern previously investigated (Valkonen et al., 2004), indicating the title compound to have more than one polymorphic form. However, the single-crystal structure of title compound is isostructural to analogous DCA and CDCA derivatives, N-(3-hydroxypropyl) 3α,12α-dihydroxy-5β-cholan-24-amide and N-(3-hydroxypropyl) 3α,7α-dihydroxy-5β-cholan-24-amide, as also seen from the simulated powder diffraction patterns in Fig. 2. These compounds have also similar unit-cell parameters, an intramolecular O—H···O hydrogen bond between hydroxyl group (O27—H27o) at the end of the side chain and amide carbonyl (O24) (Fig. 1 and Table 1) as well as similar ttti side chain overall conformation (Valkonen et al., 2008; Valkonen, 2008). The intermolecular H-bond frameworks are also identical, which is possible due to the lack of the acceptors for the extra O—H donors in structures of DCA and CDCA derivatives.

Experimental

The first step was a preparation of methyl lithocholate from lithocholic acid according to literature method (Tamminen et al., 2000). In the second step methyl lithocholate (1.69 g, 4.33 mmol) and 3-amino-1-propanol (3.25 g, 43.3 mmol) were dissolved in 20 ml of methanol. The resulting mixture was heated with an oil bath and stirred at 70–80 °C for 2 days. Cooled solution was poured into 50 ml of water, the precipitate was filtered and washed twice with water. The obtained product was dried and recrystallized from acetonitrile. Yield was 1.48 g (79%).

Suitable single crystals for X-ray diffraction were obtained by very slow evaporation of analytical sample from NMR-tube, where methanol-d4 was used as a solvent. The melting point of these single crystals (186–188 °C) was found to be in agreement with the one for powdery product (184–185 °C, Valkonen et al., 2004).

Refinement

In the absence of significant anomalous scattering effects Friedel pairs have been merged. The meaningless Flack parameter is not reported. All H atoms were visible in electron density maps, but those bonded to C were placed at idealized positions and allowed to ride on their parent atoms at C—H distances of 0.98 Å (methyl), 0.99 Å (methylene), and 1.00 Å (methine), with Uiso(H) of 1.2 times Ueq(C) (or 1.5 times Ueq(C) for methyls). The N—H proton was found in the electron density map and it was fixed in place by DFIX restraint at distance of 0.91 (2) Å from N atom, and Uiso(H) value of 1.2 times Ueq(N) was used. The O—H protons were also found in the electron density map, restrained by DFIX [0.84 (2) Å from O] and Uiso(H) factors set to values of 1.5 times Ueq(O).

Figures

Fig. 1.
View of the molecule of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
Fig. 2.
The experimental powder diffraction pattern of powdery sample and the simulated pattern from the single-crystal structure of title compound. The simulated patterns of analogous DCA and CDCA derivatives are also presented for comparison.

Crystal data

C27H47NO3F(000) = 480
Mr = 433.66Dx = 1.182 Mg m3
Monoclinic, P21Melting point = 459–461 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 11.4462 (5) ÅCell parameters from 4982 reflections
b = 7.5998 (3) Åθ = 0.4–28.3°
c = 14.3286 (6) ŵ = 0.08 mm1
β = 102.055 (2)°T = 123 K
V = 1218.94 (9) Å3Block, colourless
Z = 20.30 × 0.10 × 0.06 mm

Data collection

Bruker Kappa APEXII diffractometer2207 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.091
graphiteθmax = 28.0°, θmin = 2.1°
Detector resolution: 9 pixels mm-1h = −15→15
[var phi] and ω scansk = −8→10
9113 measured reflectionsl = −16→18
3155 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0324P)2 + 0.9968P] where P = (Fo2 + 2Fc2)/3
3155 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.32 e Å3
4 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O30.1237 (2)0.3301 (5)0.2779 (2)0.0286 (7)
H3O0.098 (4)0.433 (4)0.267 (4)0.043*
O240.9728 (3)0.1814 (4)−0.2630 (2)0.0254 (7)
O271.1324 (3)0.1259 (5)−0.3848 (2)0.0321 (8)
H27O1.076 (3)0.128 (8)−0.354 (3)0.048*
N240.9619 (3)0.4638 (5)−0.3142 (2)0.0228 (8)
H240.961 (4)0.576 (3)−0.296 (3)0.027*
C10.4412 (3)0.4854 (6)0.3733 (3)0.0174 (9)
H1A0.43870.48520.44190.021*
H1B0.48530.59200.36080.021*
C20.3124 (4)0.4976 (6)0.3147 (3)0.0194 (9)
H2A0.27340.60480.33290.023*
H2B0.31320.50510.24590.023*
C30.2436 (3)0.3357 (6)0.3338 (3)0.0208 (8)
H30.24020.33360.40300.025*
C40.3066 (4)0.1691 (5)0.3105 (3)0.0171 (9)
H4A0.26250.06510.32640.021*
H4B0.30440.16600.24110.021*
C50.4362 (4)0.1573 (6)0.3644 (3)0.0179 (9)
H50.43500.14830.43380.021*
C60.4926 (4)−0.0133 (6)0.3366 (3)0.0209 (9)
H6A0.5668−0.03750.38430.025*
H6B0.4368−0.11210.33860.025*
C70.5222 (4)−0.0058 (6)0.2371 (3)0.0197 (9)
H7A0.5658−0.11390.22640.024*
H7B0.4471−0.00160.18830.024*
C80.5982 (4)0.1547 (5)0.2259 (3)0.0150 (8)
H80.67600.14460.27290.018*
C90.5346 (3)0.3249 (6)0.2484 (2)0.0149 (7)
H90.45430.32550.20440.018*
C100.5113 (3)0.3215 (6)0.3519 (3)0.0162 (8)
C110.5986 (4)0.4930 (6)0.2267 (3)0.0193 (9)
H11A0.67210.50840.27650.023*
H11B0.54610.59520.23030.023*
C120.6329 (4)0.4923 (6)0.1274 (3)0.0205 (9)
H12A0.55930.49720.07690.025*
H12B0.68100.59830.12130.025*
C130.7040 (3)0.3283 (6)0.1135 (2)0.0150 (7)
C140.6243 (4)0.1675 (5)0.1261 (3)0.0153 (9)
H140.54580.18560.08120.018*
C150.6835 (4)0.0112 (5)0.0885 (3)0.0210 (9)
H15A0.6244−0.08230.06520.025*
H15B0.7478−0.03820.13880.025*
C160.7354 (4)0.0897 (6)0.0050 (3)0.0198 (9)
H16A0.82040.05630.01200.024*
H16B0.69040.0452−0.05710.024*
C170.7229 (3)0.2934 (5)0.0104 (3)0.0161 (9)
H170.64740.3272−0.03490.019*
C180.8249 (3)0.3242 (7)0.1850 (3)0.0213 (8)
H18A0.86890.21790.17450.032*
H18B0.81120.32370.25020.032*
H18C0.87170.42840.17570.032*
C190.6294 (3)0.3191 (7)0.4273 (3)0.0219 (8)
H19A0.67650.42380.41960.033*
H19B0.67490.21320.41890.033*
H19C0.61170.31880.49140.033*
C200.8261 (4)0.3916 (6)−0.0206 (3)0.0201 (9)
H200.90170.35930.02500.024*
C210.8120 (5)0.5929 (6)−0.0172 (3)0.0309 (11)
H21A0.80520.62850.04720.046*
H21B0.74000.6286−0.06310.046*
H21C0.88200.6495−0.03360.046*
C220.8381 (3)0.3326 (7)−0.1215 (3)0.0200 (8)
H22A0.84130.2025−0.12340.024*
H22B0.76630.3710−0.16840.024*
C230.9502 (4)0.4082 (6)−0.1506 (3)0.0221 (9)
H23A0.94540.5382−0.15180.027*
H23B1.02190.3740−0.10250.027*
C240.9626 (3)0.3426 (6)−0.2473 (3)0.0198 (8)
C250.9603 (4)0.4214 (6)−0.4139 (3)0.0265 (10)
H25A0.90740.5057−0.45550.032*
H25B0.92650.3021−0.42800.032*
C261.0851 (4)0.4280 (6)−0.4374 (3)0.0312 (11)
H26A1.07800.3998−0.50580.037*
H26B1.11650.5493−0.42690.037*
C271.1732 (4)0.3029 (7)−0.3787 (3)0.0268 (11)
H27A1.24960.3091−0.40060.032*
H27B1.18880.3408−0.31110.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O30.0175 (14)0.0220 (15)0.0440 (18)−0.0023 (16)0.0010 (12)−0.0018 (17)
O240.0259 (16)0.0213 (17)0.0316 (17)−0.0016 (15)0.0119 (13)−0.0033 (15)
O270.0307 (18)0.037 (2)0.0309 (18)0.0040 (16)0.0128 (14)−0.0078 (15)
N240.0225 (18)0.025 (2)0.0227 (18)0.0037 (17)0.0092 (15)0.0037 (17)
C10.018 (2)0.020 (2)0.0136 (19)−0.0009 (19)0.0023 (16)−0.0057 (17)
C20.020 (2)0.016 (2)0.023 (2)0.0025 (19)0.0064 (17)−0.0003 (19)
C30.0142 (17)0.023 (2)0.025 (2)0.001 (2)0.0027 (15)0.001 (2)
C40.018 (2)0.012 (2)0.024 (2)−0.0014 (18)0.0083 (16)−0.0031 (18)
C50.020 (2)0.017 (2)0.019 (2)0.0024 (19)0.0081 (17)0.0027 (17)
C60.024 (2)0.014 (2)0.027 (2)0.0026 (19)0.0114 (17)0.0054 (18)
C70.020 (2)0.015 (2)0.025 (2)0.0020 (19)0.0076 (17)0.0019 (18)
C80.015 (2)0.012 (2)0.018 (2)0.0003 (18)0.0032 (16)0.0004 (17)
C90.0143 (17)0.0155 (18)0.0154 (18)0.000 (2)0.0040 (14)−0.0013 (19)
C100.0186 (18)0.0147 (18)0.0159 (18)0.000 (2)0.0047 (15)0.0007 (18)
C110.026 (2)0.012 (2)0.024 (2)−0.003 (2)0.0116 (18)−0.0034 (19)
C120.027 (2)0.018 (2)0.018 (2)−0.001 (2)0.0094 (18)0.0033 (18)
C130.0155 (17)0.0169 (18)0.0135 (17)−0.001 (2)0.0052 (14)−0.0002 (18)
C140.018 (2)0.009 (2)0.018 (2)−0.0027 (18)0.0027 (16)0.0016 (17)
C150.031 (2)0.014 (2)0.020 (2)−0.0002 (19)0.0091 (18)0.0006 (17)
C160.024 (2)0.016 (2)0.021 (2)0.0014 (18)0.0076 (18)0.0016 (17)
C170.0156 (18)0.019 (2)0.0130 (18)−0.0013 (18)0.0007 (14)0.0009 (16)
C180.0200 (18)0.024 (2)0.0191 (19)−0.003 (2)0.0031 (15)−0.003 (2)
C190.0180 (18)0.025 (2)0.022 (2)0.003 (2)0.0018 (15)0.001 (2)
C200.023 (2)0.023 (2)0.016 (2)−0.0030 (18)0.0072 (17)0.0012 (16)
C210.044 (3)0.023 (2)0.031 (3)−0.013 (2)0.022 (2)−0.007 (2)
C220.0204 (18)0.021 (2)0.0191 (19)0.004 (2)0.0053 (15)0.0011 (19)
C230.019 (2)0.026 (2)0.023 (2)−0.0045 (19)0.0084 (18)−0.0023 (18)
C240.0152 (18)0.024 (2)0.021 (2)−0.001 (2)0.0050 (15)−0.004 (2)
C250.022 (2)0.032 (3)0.024 (2)0.008 (2)0.0022 (18)0.0090 (19)
C260.039 (3)0.034 (3)0.025 (2)0.003 (2)0.015 (2)0.004 (2)
C270.0182 (19)0.042 (3)0.021 (2)−0.005 (2)0.0055 (16)−0.004 (2)

Geometric parameters (Å, °)

O3—C31.438 (4)C12—H12B0.9900
O3—H3O0.84 (2)C13—C181.541 (5)
O24—C241.256 (5)C13—C141.558 (6)
O27—C271.420 (6)C13—C171.559 (5)
O27—H27O0.86 (4)C14—C151.520 (6)
N24—C241.328 (6)C14—H141.0000
N24—C251.460 (5)C15—C161.561 (5)
N24—H240.89 (2)C15—H15A0.9900
C1—C21.539 (5)C15—H15B0.9900
C1—C101.546 (6)C16—C171.558 (6)
C1—H1A0.9900C16—H16A0.9900
C1—H1B0.9900C16—H16B0.9900
C2—C31.516 (6)C17—C201.539 (5)
C2—H2A0.9900C17—H171.0000
C2—H2B0.9900C18—H18A0.9800
C3—C41.528 (6)C18—H18B0.9800
C3—H31.0000C18—H18C0.9800
C4—C51.525 (5)C19—H19A0.9800
C4—H4A0.9900C19—H19B0.9800
C4—H4B0.9900C19—H19C0.9800
C5—C61.537 (6)C20—C211.540 (6)
C5—C101.546 (6)C20—C221.547 (5)
C5—H51.0000C20—H201.0000
C6—C71.534 (5)C21—H21A0.9800
C6—H6A0.9900C21—H21B0.9800
C6—H6B0.9900C21—H21C0.9800
C7—C81.526 (5)C22—C231.541 (5)
C7—H7A0.9900C22—H22A0.9900
C7—H7B0.9900C22—H22B0.9900
C8—C141.524 (5)C23—C241.507 (5)
C8—C91.551 (5)C23—H23A0.9900
C8—H81.0000C23—H23B0.9900
C9—C111.537 (6)C25—C261.535 (6)
C9—C101.562 (5)C25—H25A0.9900
C9—H91.0000C25—H25B0.9900
C10—C191.544 (5)C26—C271.508 (6)
C11—C121.553 (5)C26—H26A0.9900
C11—H11A0.9900C26—H26B0.9900
C11—H11B0.9900C27—H27A0.9900
C12—C131.524 (6)C27—H27B0.9900
C12—H12A0.9900
C3—O3—H3O109 (4)C14—C13—C17100.2 (3)
C27—O27—H27O103 (4)C15—C14—C8118.1 (3)
C24—N24—C25123.4 (4)C15—C14—C13104.9 (3)
C24—N24—H24117 (3)C8—C14—C13113.2 (3)
C25—N24—H24120 (3)C15—C14—H14106.7
C2—C1—C10114.7 (3)C8—C14—H14106.7
C2—C1—H1A108.6C13—C14—H14106.7
C10—C1—H1A108.6C14—C15—C16104.0 (3)
C2—C1—H1B108.6C14—C15—H15A111.0
C10—C1—H1B108.6C16—C15—H15A111.0
H1A—C1—H1B107.6C14—C15—H15B111.0
C3—C2—C1109.1 (3)C16—C15—H15B111.0
C3—C2—H2A109.9H15A—C15—H15B109.0
C1—C2—H2A109.9C17—C16—C15106.7 (3)
C3—C2—H2B109.9C17—C16—H16A110.4
C1—C2—H2B109.9C15—C16—H16A110.4
H2A—C2—H2B108.3C17—C16—H16B110.4
O3—C3—C2113.2 (3)C15—C16—H16B110.4
O3—C3—C4107.0 (3)H16A—C16—H16B108.6
C2—C3—C4110.3 (3)C20—C17—C16112.6 (3)
O3—C3—H3108.7C20—C17—C13117.2 (3)
C2—C3—H3108.7C16—C17—C13104.4 (3)
C4—C3—H3108.7C20—C17—H17107.4
C5—C4—C3113.1 (3)C16—C17—H17107.4
C5—C4—H4A109.0C13—C17—H17107.4
C3—C4—H4A109.0C13—C18—H18A109.5
C5—C4—H4B109.0C13—C18—H18B109.5
C3—C4—H4B109.0H18A—C18—H18B109.5
H4A—C4—H4B107.8C13—C18—H18C109.5
C4—C5—C6109.6 (3)H18A—C18—H18C109.5
C4—C5—C10113.5 (3)H18B—C18—H18C109.5
C6—C5—C10112.2 (3)C10—C19—H19A109.5
C4—C5—H5107.1C10—C19—H19B109.5
C6—C5—H5107.1H19A—C19—H19B109.5
C10—C5—H5107.1C10—C19—H19C109.5
C7—C6—C5113.3 (3)H19A—C19—H19C109.5
C7—C6—H6A108.9H19B—C19—H19C109.5
C5—C6—H6A108.9C17—C20—C21112.4 (4)
C7—C6—H6B108.9C17—C20—C22110.6 (3)
C5—C6—H6B108.9C21—C20—C22110.3 (4)
H6A—C6—H6B107.7C17—C20—H20107.8
C8—C7—C6111.7 (3)C21—C20—H20107.8
C8—C7—H7A109.3C22—C20—H20107.8
C6—C7—H7A109.3C20—C21—H21A109.5
C8—C7—H7B109.3C20—C21—H21B109.5
C6—C7—H7B109.3H21A—C21—H21B109.5
H7A—C7—H7B107.9C20—C21—H21C109.5
C14—C8—C7112.2 (3)H21A—C21—H21C109.5
C14—C8—C9109.5 (3)H21B—C21—H21C109.5
C7—C8—C9110.0 (3)C23—C22—C20112.8 (3)
C14—C8—H8108.4C23—C22—H22A109.0
C7—C8—H8108.4C20—C22—H22A109.0
C9—C8—H8108.4C23—C22—H22B109.0
C11—C9—C8112.8 (3)C20—C22—H22B109.0
C11—C9—C10112.9 (3)H22A—C22—H22B107.8
C8—C9—C10111.4 (3)C24—C23—C22111.7 (3)
C11—C9—H9106.4C24—C23—H23A109.3
C8—C9—H9106.4C22—C23—H23A109.3
C10—C9—H9106.4C24—C23—H23B109.3
C19—C10—C1106.6 (3)C22—C23—H23B109.3
C19—C10—C5109.6 (3)H23A—C23—H23B107.9
C1—C10—C5107.7 (3)O24—C24—N24122.3 (4)
C19—C10—C9111.5 (3)O24—C24—C23121.1 (4)
C1—C10—C9111.9 (3)N24—C24—C23116.6 (4)
C5—C10—C9109.4 (3)N24—C25—C26112.6 (4)
C9—C11—C12113.9 (3)N24—C25—H25A109.1
C9—C11—H11A108.8C26—C25—H25A109.1
C12—C11—H11A108.8N24—C25—H25B109.1
C9—C11—H11B108.8C26—C25—H25B109.1
C12—C11—H11B108.8H25A—C25—H25B107.8
H11A—C11—H11B107.7C27—C26—C25113.7 (4)
C13—C12—C11111.5 (3)C27—C26—H26A108.8
C13—C12—H12A109.3C25—C26—H26A108.8
C11—C12—H12A109.3C27—C26—H26B108.8
C13—C12—H12B109.3C25—C26—H26B108.8
C11—C12—H12B109.3H26A—C26—H26B107.7
H12A—C12—H12B108.0O27—C27—C26112.9 (3)
C12—C13—C18111.1 (3)O27—C27—H27A109.0
C12—C13—C14106.5 (3)C26—C27—H27A109.0
C18—C13—C14111.9 (3)O27—C27—H27B109.0
C12—C13—C17116.5 (3)C26—C27—H27B109.0
C18—C13—C17110.1 (3)H27A—C27—H27B107.8
C10—C1—C2—C358.8 (4)C11—C12—C13—C17168.6 (3)
C1—C2—C3—O3−176.7 (3)C7—C8—C14—C15−55.8 (5)
C1—C2—C3—C4−56.7 (4)C9—C8—C14—C15−178.2 (3)
O3—C3—C4—C5179.5 (3)C7—C8—C14—C13−178.8 (3)
C2—C3—C4—C555.9 (4)C9—C8—C14—C1358.7 (4)
C3—C4—C5—C6−179.8 (3)C12—C13—C14—C15166.7 (3)
C3—C4—C5—C10−53.6 (4)C18—C13—C14—C15−71.8 (4)
C4—C5—C6—C775.0 (4)C17—C13—C14—C1544.8 (4)
C10—C5—C6—C7−52.1 (5)C12—C13—C14—C8−63.2 (4)
C5—C6—C7—C853.0 (5)C18—C13—C14—C858.4 (4)
C6—C7—C8—C14−177.8 (3)C17—C13—C14—C8175.0 (3)
C6—C7—C8—C9−55.6 (4)C8—C14—C15—C16−161.2 (3)
C14—C8—C9—C11−49.3 (4)C13—C14—C15—C16−34.1 (4)
C7—C8—C9—C11−173.0 (4)C14—C15—C16—C179.7 (4)
C14—C8—C9—C10−177.4 (3)C15—C16—C17—C20146.1 (3)
C7—C8—C9—C1058.9 (4)C15—C16—C17—C1317.9 (4)
C2—C1—C10—C19−171.7 (3)C12—C13—C17—C2082.7 (4)
C2—C1—C10—C5−54.1 (4)C18—C13—C17—C20−44.9 (5)
C2—C1—C10—C966.2 (4)C14—C13—C17—C20−162.8 (3)
C4—C5—C10—C19165.9 (3)C12—C13—C17—C16−152.0 (4)
C6—C5—C10—C19−69.2 (4)C18—C13—C17—C1680.4 (4)
C4—C5—C10—C150.3 (4)C14—C13—C17—C16−37.6 (4)
C6—C5—C10—C1175.2 (3)C16—C17—C20—C21178.8 (4)
C4—C5—C10—C9−71.6 (4)C13—C17—C20—C21−60.1 (5)
C6—C5—C10—C953.3 (4)C16—C17—C20—C2254.9 (5)
C11—C9—C10—C19−64.0 (5)C13—C17—C20—C22176.0 (3)
C8—C9—C10—C1964.1 (5)C17—C20—C22—C23−172.3 (3)
C11—C9—C10—C155.3 (4)C21—C20—C22—C2362.6 (5)
C8—C9—C10—C1−176.6 (3)C20—C22—C23—C24177.6 (4)
C11—C9—C10—C5174.6 (3)C25—N24—C24—O246.6 (6)
C8—C9—C10—C5−57.4 (4)C25—N24—C24—C23−173.3 (3)
C8—C9—C11—C1247.6 (4)C22—C23—C24—O24−60.4 (5)
C10—C9—C11—C12174.9 (3)C22—C23—C24—N24119.5 (4)
C9—C11—C12—C13−53.0 (5)C24—N24—C25—C26−97.7 (5)
C11—C12—C13—C18−64.3 (4)N24—C25—C26—C2759.3 (5)
C11—C12—C13—C1457.9 (4)C25—C26—C27—O2755.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O27—H27O···O240.86 (4)1.98 (2)2.810 (4)164 (5)
O3—H3O···O24i0.84 (2)2.05 (2)2.880 (5)171 (5)
N24—H24···O3i0.89 (2)2.20 (3)3.032 (5)155 (4)

Symmetry codes: (i) −x+1, y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2393).

References

  • Bruker (2008). COLLECT Bruker AXS Inc., Delft, The Netherlands.
  • Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tamminen, J., Kolehmainen, E., Haapala, M., Salo, H. & Linnanto, J. (2000). Arkivoc, i, 80–86.
  • Valkonen, A. (2008). PhD thesis, University of Jyväskylä, Finland.
  • Valkonen, A., Kolehmainen, E., Lahtinen, M., Sievänen, E., Noponen, V., Tolonen, M. & Kauppinen, R. (2007). Molecules, 12, 2161–2178. [PubMed]
  • Valkonen, A., Lahtinen, M. & Kolehmainen, E. (2008). Steroids, 73, 1228–1241. [PubMed]
  • Valkonen, A., Lahtinen, M., Virtanen, E., Kaikkonen, S. & Kolehmainen, E. (2004). Biosens. Biolelectron.20, 1233–1241. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography