PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o656–o657.
Published online 2009 February 28. doi:  10.1107/S1600536809006679
PMCID: PMC2968532

(S,S)-N,N′-Bis(1-carb­oxy-2-methyl­prop­yl)ethyl­enediammonium dihalide cyclo­penta­nol tetra­solvate (halide = bromide/chloride [similar, equals] 1:12)

Abstract

In the crystal structure of the title compound, C12H26N2O4 2+·2(Br0.085Cl0.915)·4C5H9OH, the complete cation is generated by crystallographic twofold symmetry. Contamination of the chloride counter-anion with bromide occured during the preparation, due to the use of 1,2-dibromo­ethane. One of the solvent mol­ecules is disordered, with occupancies 0.53 (3):0.47 (3). The crystal packing is stabilized by an infinite two dimensional (...)X(...)H—N—H(...)X(...) hydrogen-bonding network (X: Br/Cl [similar, equals] 1:12). In addition, O—H(...)X and O—H(...)O hydrogen bonds involving solvent mol­ecules are observed.

Related literature

For dihydro­chloride salts of the analog ethyl­enediamine-N,N′-diacetic acid and ethyl­enediamine-N,N′-di-3-propionic acid, see: Mistryukov et al. (1987 [triangle]); Shkol’nikova et al. (1989 [triangle], 1990 [triangle], 1992 [triangle]). For bond lengths and angles in ethyl­enediammonium-N,N′-di-3-propanoic acid dichloride and similar compounds, see: Kaluderović et al. (2004 [triangle], 2007 [triangle]). For the synthesis, see: Schoenberg et al. (1968 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o656-scheme1.jpg

Experimental

Crystal data

  • C12H26N2O4 2+·2(Br0.09Cl0.91)·4C5H10O
  • M r = 685.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o656-efi1.jpg
  • a = 21.2037 (5) Å
  • b = 5.2166 (1) Å
  • c = 17.2517 (5) Å
  • β = 97.037 (2)°
  • V = 1893.86 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 130 K
  • 0.7 × 0.04 × 0.04 mm

Data collection

  • Oxford Diffraction CCD Oxford Xcalibur S diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.981, T max = 0.985
  • 28298 measured reflections
  • 5795 independent reflections
  • 4851 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.104
  • S = 0.98
  • 5795 reflections
  • 232 parameters
  • 92 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.37 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2602 Friedel pairs
  • Flack parameter: −0.04 (2)

Data collection: CrysAlisPro (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006679/fj2196sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006679/fj2196Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Ministry of Science and Technological Development of the Republic of Serbia for financial support (grant No. 142010).

supplementary crystallographic information

Comment

Dihydrochloride salts of the analog ethylenediamine-N,N'-diacetic acid and ethylenediamine-N,N'-di-3-propionic acid are reported in the literature, see (Shkol'nikova et al., 1989; Shkol'nikova et al., 1990; Shkol'nikova et al., 1992; Mistryukov et al., 1987).

Crude (S,S)-ethylenediammonium-N,N'-di-2-(3-methyl)-butanoic acid dihalide, [(H4eddv)X2], obtained from the reaction of L-valine and 1,2-dibromethane (Schoenberg et al.,1968), was used for the synthesis of dicyclopentyl ester. The title compound is isolated from the mother liquor as a mixture of Cl and Br salts. The structure consists of several species: one dicationic, C12H26N2O42+, 0.17 Br and 1.83 Cl anions and four cyclopentanol molecules (Fig. 1). Bond lengths and angles are comparable with those of ethylenediammonium-N,N'-di-3-propanoic acid dichloride and similar compounds (Kaluđerović et al., 2004, 2007). All of the mentioned species are stabilizing the structure by intramolecular and intermolecular H-bonds (Table 1). The solvent molecules are involved in hydrogen bonding, through O4–H4O···O3 atoms (Fig. 2). Furthermore, the H3O atom bonded to O3 is participating in hydrogen bonding with X atom (X: Br/Cl≈ 1:12), which is on the other side interacting via hydrogen bond with the H1N–N1 moiety. The cyclopentyl rings are in envelope conformations.

Experimental

(S,S)-ethylenediammonium-N,N'-di-2-(3-methyl)-butanoic acid dihalide is obtained as earlier described in literature (Schoenberg et al.,1968), by combining the solutions of L-valine and 1,2-dibromoethane. The title compound is obtained unintentionally. The goal was to synthesize a dicyclopentyl ester of (S,S)-ethylenediammonium-N,N'-di-2-(3-methyl)-butanoic acid dichloride. Thionyl chloride (4.0 ml, 55 mmol) was introduced into a flask containing cyclopentanol (50 ml, anhydrous conditions) over 1 h. After that (S,S)-ethylenediammonium-N,N'-di-2-(3-methyl)-butanoic acid dihalide (calculated for X=Cl: 2.0 g, 6.00 mmol) was added to the flask and the suspension was refluxed 16 h. The mixture was filtered off and the filtrate was left for a few days at 4 °C yielding crystals suitable for X-ray measurements.

Refinement

The H atoms connected to the nitrogen and oxygen atoms were found in difference maps and yielded reasonable bond lengths and angles (O—H bond length: 0.86 (3) – 0.95 (2) Å); N—H bond length: 0.88 (2) and 0.93 (2) Å), all other H atoms were positioned geometrically and treated as riding, with C—H bonding lengths constrained to 0.98–1.00 Å. The two positions of the disordered Cl- versus Br-atoms were determined from the difference map and refined anisotropically with occupancies of 0.915 (Cl) and 0.085 (Br).

Figures

Fig. 1.
ORTEP representation of [(H4eddv)X2].4C5H9OH. The structure contains a 1:12 Br/Cl (X) disorder. The figure displays the Cl-part of this disorder (Cl1). Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as small spheres ...
Fig. 2.
Network of H-bonding.

Crystal data

C12H26N2O42+·2(Br0.09Cl0.91)·4(C5H10O)F(000) = 745.4
Mr = 685.41Dx = 1.202 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 12428 reflections
a = 21.2037 (5) Åθ = 2.9–32.3°
b = 5.2166 (1) ŵ = 0.39 mm1
c = 17.2517 (5) ÅT = 130 K
β = 97.037 (2)°Needles, colourless
V = 1893.86 (8) Å30.7 × 0.04 × 0.04 mm
Z = 2

Data collection

Oxford Diffraction CCD Oxford Xcalibur S diffractometer5795 independent reflections
graphite4851 reflections with I > 2σ(I)
Detector resolution: 16.356 pixels mm-1Rint = 0.035
ω and [var phi] scansθmax = 30.5°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −30→30
Tmin = 0.981, Tmax = 0.985k = −7→7
28298 measured reflectionsl = −24→24

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104w = 1/[σ2(Fo2) + (0.0675P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
5795 reflectionsΔρmax = 0.62 e Å3
232 parametersΔρmin = −0.37 e Å3
92 restraintsAbsolute structure: Flack (1983), 2602 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.04 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl10.597627 (15)0.42698 (6)−0.072483 (19)0.02203 (10)0.914 (2)
Br10.597627 (15)0.42698 (6)−0.072483 (19)0.02203 (10)0.086 (2)
O10.63329 (7)0.1414 (3)0.23276 (8)0.0340 (3)
O20.58689 (6)0.3389 (2)0.12648 (7)0.0267 (3)
O30.52079 (7)0.6832 (3)−0.22443 (9)0.0422 (4)
O40.40459 (9)0.5428 (4)−0.29775 (10)0.0513 (5)
N10.58713 (5)−0.0783 (3)0.03571 (7)0.0172 (2)
C10.51770 (7)−0.1047 (4)0.04083 (9)0.0201 (3)
H1A0.50290.03960.07120.024*
H1B0.5094−0.26660.06770.024*
C20.62661 (6)−0.0867 (4)0.11390 (8)0.0184 (3)
H20.6129−0.23740.14350.022*
C30.61327 (8)0.1557 (3)0.15757 (10)0.0205 (3)
C40.69721 (7)−0.1218 (3)0.10265 (10)0.0224 (4)
H40.6993−0.26210.06360.027*
C50.72565 (9)0.1159 (4)0.07002 (13)0.0325 (4)
H5A0.72520.25710.10740.049*
H5B0.70060.16370.02060.049*
H5C0.76960.08050.0610.049*
C60.73642 (9)−0.2077 (4)0.17799 (12)0.0352 (5)
H6A0.7802−0.24170.1680.053*
H6B0.718−0.36430.19710.053*
H6C0.7364−0.07240.21740.053*
C70.56429 (12)0.8890 (5)−0.23271 (13)0.0457 (6)
H70.57220.9917−0.18350.055*
C80.53654 (16)1.0530 (6)−0.29992 (19)0.0644 (8)
H8A0.48971.0364−0.30830.077*
H8B0.54771.2354−0.29030.077*
C90.5648 (3)0.9555 (15)−0.3675 (2)0.137 (2)
H9A0.53130.8773−0.4050.164*
H9B0.58371.0998−0.3940.164*
C100.6126 (5)0.7700 (16)−0.3447 (4)0.065 (3)0.53 (3)
H10A0.65140.8074−0.36930.078*0.53 (3)
H10B0.59740.5964−0.36080.078*0.53 (3)
C10B0.6295 (7)0.875 (6)−0.3364 (7)0.120 (6)0.47 (3)
H10C0.64410.7349−0.36870.144*0.47 (3)
H10D0.65941.0202−0.33650.144*0.47 (3)
C110.62670 (13)0.7854 (7)−0.2568 (2)0.0678 (8)
H11A0.63690.6143−0.23370.081*
H11B0.66250.9036−0.24080.081*
C120.38374 (13)0.6636 (5)−0.37004 (13)0.0477 (6)
H120.39690.8479−0.36860.057*
C130.40779 (19)0.5284 (12)−0.4380 (2)0.115 (2)
H13A0.4460.4245−0.42050.138*
H13B0.41820.6525−0.4780.138*
C140.3485 (2)0.3475 (7)−0.47177 (19)0.0811 (11)
H14A0.33210.3974−0.52590.097*
H14B0.36160.1653−0.47160.097*
C150.30020 (19)0.3870 (9)−0.41962 (19)0.0827 (11)
H15A0.30370.2558−0.37790.099*
H15B0.2570.3791−0.44880.099*
C160.31332 (17)0.6412 (7)−0.38706 (19)0.0699 (9)
H16A0.29330.6627−0.33860.084*
H16B0.29640.7743−0.42490.084*
H1N0.5902 (10)0.065 (4)0.0092 (12)0.018 (5)*
H2N0.6002 (12)−0.213 (4)0.0066 (14)0.044 (7)*
H4O0.4439 (15)0.568 (6)−0.2807 (17)0.060 (9)*
H3O0.5371 (13)0.581 (6)−0.1818 (14)0.062 (9)*
H1O0.627 (3)−0.029 (6)0.250 (4)0.23 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.02064 (15)0.01766 (14)0.02759 (17)0.00010 (16)0.00212 (11)0.00040 (17)
Br10.02064 (15)0.01766 (14)0.02759 (17)0.00010 (16)0.00212 (11)0.00040 (17)
O10.0468 (8)0.0297 (7)0.0232 (7)0.0082 (6)−0.0050 (6)−0.0016 (5)
O20.0360 (7)0.0161 (5)0.0271 (6)0.0043 (5)−0.0004 (5)−0.0021 (5)
O30.0404 (8)0.0446 (9)0.0399 (9)−0.0104 (7)−0.0017 (7)0.0096 (7)
O40.0491 (10)0.0571 (10)0.0427 (10)−0.0191 (9)−0.0137 (8)0.0288 (8)
N10.0150 (5)0.0144 (5)0.0218 (6)−0.0013 (7)0.0011 (4)−0.0021 (8)
C10.0136 (6)0.0233 (9)0.0234 (7)−0.0005 (6)0.0017 (5)0.0009 (7)
C20.0182 (6)0.0148 (6)0.0214 (6)−0.0010 (8)−0.0008 (5)0.0001 (8)
C30.0189 (7)0.0184 (7)0.0241 (8)−0.0038 (6)0.0018 (6)−0.0020 (6)
C40.0170 (6)0.0190 (10)0.0302 (8)0.0027 (5)−0.0004 (6)−0.0008 (6)
C50.0180 (8)0.0337 (10)0.0461 (12)0.0008 (7)0.0057 (8)0.0089 (9)
C60.0255 (9)0.0337 (11)0.0439 (12)0.0065 (8)−0.0057 (8)0.0047 (9)
C70.0586 (13)0.0411 (15)0.0388 (11)−0.0170 (11)0.0114 (10)−0.0112 (10)
C80.075 (2)0.0423 (14)0.079 (2)0.0001 (14)0.0223 (16)0.0113 (14)
C90.146 (4)0.217 (7)0.055 (2)0.058 (5)0.040 (2)0.043 (3)
C100.082 (5)0.067 (5)0.053 (4)−0.013 (3)0.039 (4)−0.018 (3)
C10B0.075 (6)0.197 (15)0.097 (7)0.001 (10)0.043 (5)−0.011 (10)
C110.0410 (14)0.076 (2)0.086 (2)−0.0124 (14)0.0061 (14)0.0102 (18)
C120.0605 (15)0.0477 (14)0.0316 (11)−0.0060 (12)−0.0078 (10)0.0176 (10)
C130.085 (3)0.205 (6)0.056 (2)0.059 (3)0.0158 (18)0.038 (3)
C140.132 (3)0.0586 (19)0.0527 (17)−0.0053 (19)0.011 (2)−0.0057 (14)
C150.097 (2)0.085 (3)0.0592 (18)−0.005 (2)−0.0168 (17)0.0057 (18)
C160.075 (2)0.071 (2)0.0564 (17)0.0054 (17)−0.0213 (15)0.0075 (16)

Geometric parameters (Å, °)

O1—C31.317 (2)C8—C91.466 (5)
O1—H1O0.95 (2)C8—H8A0.99
O2—C31.200 (2)C8—H8B0.99
O3—C71.434 (3)C9—C101.421 (9)
O3—H3O0.939 (17)C9—C10B1.472 (12)
O4—C121.419 (2)C9—H9A0.99
O4—H4O0.86 (3)C9—H9B0.99
N1—C11.4919 (18)C10—C111.512 (8)
N1—C21.4986 (18)C10—H10A0.99
N1—H1N0.88 (2)C10—H10B0.99
N1—H2N0.925 (17)C10B—C111.458 (11)
C1—C1i1.513 (3)C10B—H10C0.99
C1—H1A0.99C10B—H10D0.99
C1—H1B0.99C11—H11A0.99
C2—C31.516 (3)C11—H11B0.99
C2—C41.544 (2)C12—C161.491 (4)
C2—H21C12—C131.510 (5)
C4—C51.517 (2)C12—H121
C4—C61.522 (3)C13—C141.622 (6)
C4—H41C13—H13A0.99
C5—H5A0.98C13—H13B0.99
C5—H5B0.98C14—C151.458 (5)
C5—H5C0.98C14—H14A0.99
C6—H6A0.98C14—H14B0.99
C6—H6B0.98C15—C161.454 (5)
C6—H6C0.98C15—H15A0.99
C7—C81.502 (4)C15—H15B0.99
C7—C111.533 (4)C16—H16A0.99
C7—H71C16—H16B0.99
C3—O1—H1O108 (4)C8—C9—H9A109.4
C7—O3—H3O108.9 (19)C10B—C9—H9A133.1
C12—O4—H4O115 (2)C10—C9—H9B109.4
C1—N1—C2112.98 (11)C8—C9—H9B109.4
C1—N1—H1N104.2 (14)C10B—C9—H9B88.7
C2—N1—H1N114.9 (14)H9A—C9—H9B108
C1—N1—H2N109.0 (16)C9—C10—C11106.7 (4)
C2—N1—H2N107.1 (17)C9—C10—H10A110.4
H1N—N1—H2N108.5 (18)C11—C10—H10A110.4
N1—C1—C1i108.99 (15)C9—C10—H10B110.4
N1—C1—H1A109.9C11—C10—H10B110.4
C1i—C1—H1A109.9H10A—C10—H10B108.6
N1—C1—H1B109.9C11—C10B—C9106.9 (7)
C1i—C1—H1B109.9C11—C10B—H10C110.3
H1A—C1—H1B108.3C9—C10B—H10C110.3
N1—C2—C3107.77 (15)C11—C10B—H10D110.3
N1—C2—C4109.49 (12)C9—C10B—H10D110.3
C3—C2—C4113.84 (14)H10C—C10B—H10D108.6
N1—C2—H2108.5C10B—C11—C7106.2 (5)
C3—C2—H2108.5C7—C11—C10102.7 (4)
C4—C2—H2108.5C10B—C11—H11A129.4
O2—C3—O1124.15 (16)C7—C11—H11A111.2
O2—C3—C2123.18 (15)C10—C11—H11A111.2
O1—C3—C2112.66 (14)C10B—C11—H11B86.8
C5—C4—C6110.92 (15)C7—C11—H11B111.2
C5—C4—C2112.68 (14)C10—C11—H11B111.2
C6—C4—C2111.35 (15)H11A—C11—H11B109.1
C5—C4—H4107.2O4—C12—C16109.6 (2)
C6—C4—H4107.2O4—C12—C13112.1 (3)
C2—C4—H4107.2C16—C12—C13103.6 (3)
C4—C5—H5A109.5O4—C12—H12110.4
C4—C5—H5B109.5C16—C12—H12110.4
H5A—C5—H5B109.5C13—C12—H12110.4
C4—C5—H5C109.5C12—C13—C14103.3 (3)
H5A—C5—H5C109.5C12—C13—H13A111.1
H5B—C5—H5C109.5C14—C13—H13A111.1
C4—C6—H6A109.5C12—C13—H13B111.1
C4—C6—H6B109.5C14—C13—H13B111.1
H6A—C6—H6B109.5H13A—C13—H13B109.1
C4—C6—H6C109.5C15—C14—C13105.6 (3)
H6A—C6—H6C109.5C15—C14—H14A110.6
H6B—C6—H6C109.5C13—C14—H14A110.6
O3—C7—C8107.9 (2)C15—C14—H14B110.6
O3—C7—C11110.5 (2)C13—C14—H14B110.6
C8—C7—C11105.2 (2)H14A—C14—H14B108.8
O3—C7—H7111C14—C15—C16104.6 (4)
C8—C7—H7111C14—C15—H15A110.8
C11—C7—H7111C16—C15—H15A110.8
C9—C8—C7104.9 (3)C14—C15—H15B110.8
C9—C8—H8A110.8C16—C15—H15B110.8
C7—C8—H8A110.8H15A—C15—H15B108.9
C9—C8—H8B110.8C15—C16—C12106.7 (3)
C7—C8—H8B110.8C15—C16—H16A110.4
H8A—C8—H8B108.8C12—C16—H16A110.4
C10—C9—C8111.3 (4)C15—C16—H16B110.4
C8—C9—C10B105.3 (7)C12—C16—H16B110.4
C10—C9—H9A109.4H16A—C16—H16B108.6

Symmetry codes: (i) −x+1, y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.88 (2)2.37 (2)3.253 (2)175 (2)
N1—H2N···Cl1ii0.93 (2)2.32 (2)3.209 (2)161 (2)
N1—H2N···Br1ii0.93 (2)2.32 (2)3.209 (2)161 (2)
N1—H1N···Br10.88 (2)2.37 (2)3.253 (2)175 (2)
O1—H1O···O4iii0.95 (4)2.50 (4)3.446 (3)172 (5)
O4—H4O···O30.86 (3)1.89 (3)2.728 (2)165 (3)
O3—H3O···Cl10.94 (3)2.29 (3)3.204 (2)163 (2)
O3—H3O···Br10.94 (3)2.29 (3)3.204 (2)163 (2)
C1—H1A···O20.992.473.027 (2)115
C1—H1B···Cl1iii0.992.793.5460 (18)134
C2—H2···O2ii1.002.293.127 (2)141
C6—H6C···O10.982.503.082 (3)118

Symmetry codes: (ii) x, y−1, z; (iii) −x+1, y−1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2196).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Kaluderović, G. N., Gómez-Ruiz, S., Schmidt, H. & Steinborn, D. (2007). Acta Cryst. E63, o3491.
  • Kaluderović, G. N., Heinemann, F. W., Knežević, N. Ž., Trifunović, S. R. & Sabo, T. J. (2004). J. Chem. Crystallogr.34, 185–189.
  • Mistryukov, V. E., Mikhailov, Yu. N., Sergeev, A. V., Zhuravlov, M. G., Schelokov, R. N., Chernov, A. P., Fodorov, V. A. & Brekhovskikh, M. N. (1987). Dokl. Akad. Nauk SSSR, 295, 1390–1393.
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Schoenberg, L. N., Cooke, D. W. & Liu, C. F. (1968). Inorg. Chem.7, 2386–2393.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shkol’nikova, L. M., Ilyukhin, A. B., Gasparyan, A. V., Zavodnik, V. E., Poznyak, A. L. & Makarevich, S. S. (1990). Kristallografiya, 35, 1421–1424.
  • Shkol’nikova, L. M., Sotman, S. S., Poznyak, A. L. & Stoplyanskaya, L. V. (1992). Kristallografiya, 37, 692–695.
  • Shkol’nikova, L. M., Suyarov, N. D., Gasparyan, A. V., Poznyak, A. L., Zavodnik, V. E. & Dyaltova, N. M. (1989). Zh. Strukt. Khim.30, 92–104.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography