PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m313–m314.
Published online 2009 February 25. doi:  10.1107/S1600536809005881
PMCID: PMC2968530

Poly[[[diaqua­cobalt(II)]-bis­[μ2-1,1′-(butane-1,4-di­yl)diimidazole-κ2 N 3:N 3′]] dinitrate]

Abstract

In the title compound, {[Co(C10H14N4)2(H2O)2](NO3)2}n, the CoII ion lies on an inversion center and is six-coordinated in an octa­hedral environment by four N atoms from four different 1,1′-butane-1,4-diyldiimidazole ligands and two O atoms from the two water mol­ecules. The CoII atoms are bridged by ligands, generating a two-dimensional (4,4)-network. Adjacent fishnet planes are linked to the nitrate anions via O—H(...)O hydrogen bonds, forming a three-dimensional supra­molecular structure.

Related literature

For the synthesis of 1,1′-butane-1,4-diyldiimidazole, see: Ma et al. (2003 [triangle]); Yu et al. (2008 [triangle]) For a related Co complex, see: Dong & Zhang (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m313-scheme1.jpg

Experimental

Crystal data

  • [Co(C10H14N4)2(H2O)2](NO3)2
  • M r = 599.49
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m313-efi1.jpg
  • a = 8.574 (7) Å
  • b = 8.692 (6) Å
  • c = 9.666 (5) Å
  • α = 104.71 (2)°
  • β = 97.14 (3)°
  • γ = 98.89 (3)°
  • V = 678.2 (8) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.70 mm−1
  • T = 291 K
  • 0.45 × 0.28 × 0.26 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.745, T max = 0.842
  • 6717 measured reflections
  • 3073 independent reflections
  • 2888 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.096
  • S = 1.16
  • 3073 reflections
  • 178 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005881/ng2547sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005881/ng2547Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Heilongjiang University for supporting this study.

supplementary crystallographic information

Comment

The 1,1'-butane-1,4-diyldiimidazole as a flexible ligand exhibit a variety of supramolecular aggregation patterns (Ma et al., 2003; Dong et al., 2006; Yu et al., 2008). In this paper, we report the new title compound, (I), synthssized by the reaction of 1,1'-butane-1,4-diyldiimidazole ligand and cobalt dinitrate in aqua solution.

In (I), each CoII atom is located on a inversion centre and is six-coordinated in an octahedral environment by four N atoms from four different 1,1'-butane-1,4-diyldiimidazole ligands and two O atoms form the two water molecules (Fig. 1). The Co—N and Co—O distances are normal (Table 1). The CoII atoms are bridged by ligands, generating a two-dimensional (4,4)-network (Fig. 2).

In the crystal, a R44(12) motif is built up by O—H···O hydrogen bonding interaction between the uncoordinated nitrate anions and the coordinated water molecules,which linke the adjacent fishnet planes to a three-dimensional supramolecular structure (Fig. 3, Table 2).

Experimental

1,1'-Butane-1,4-diyldiimidazole ligand was prepared from imidazole and 1,4-dibromobutane in DMSO (Ma et al., 2003a). 1,1'-Butane-1,4-diyldiimidazole (0.76 g, 4 mmol) and cobalt dinitrate (0.73 g, 4 mmol) were dissolved in hot aqua solution (10 ml) to give a clear solution. The resulting solution was allowed to stand in a desiccator at room temperature for a week, pink crystals of (I) were obtained.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. Dashed lines indicate the hydrogen-bonding interactions [Symmetry code; (I) -x + 1, -y, -z + 1; (II) -x + 1, -y + 2, -z + 2: (III) -x, -y + 1, ...
Fig. 2.
A partial packing view, showing the two-dimensional (4,4)-network. Dashed lines indicate the hydrogen-bonding interactions and no involving H atoms have beeb omitted.
Fig. 3.
A Partial packing view, shoving the three-dimensional supramolecular structure. Dashed lines indicate the hydrogen-bonding interactions and no involving H atoms have beeb omitted.

Crystal data

[Co(C10H14N4)2(H2O)2](NO3)2Z = 1
Mr = 599.49F(000) = 313
Triclinic, P1Dx = 1.468 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.574 (7) ÅCell parameters from 6295 reflections
b = 8.692 (6) Åθ = 3.0–27.5°
c = 9.666 (5) ŵ = 0.70 mm1
α = 104.71 (2)°T = 291 K
β = 97.14 (3)°Block, brown
γ = 98.89 (3)°0.45 × 0.28 × 0.26 mm
V = 678.2 (8) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer3073 independent reflections
Radiation source: fine-focus sealed tube2888 reflections with I > 2σ(I)
graphiteRint = 0.015
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −11→11
Tmin = 0.745, Tmax = 0.842k = −11→11
6717 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.16w = 1/[σ2(Fo2) + (0.0539P)2 + 0.1966P] where P = (Fo2 + 2Fc2)/3
3073 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1755 (2)0.2246 (2)0.53022 (19)0.0325 (4)
H10.21060.28220.62720.039*
C20.0680 (2)0.1572 (2)0.30656 (19)0.0336 (4)
H20.01310.16050.21840.040*
C30.1346 (2)0.0324 (2)0.3277 (2)0.0372 (4)
H30.1343−0.06420.25860.045*
C40.2858 (2)−0.0192 (3)0.5505 (2)0.0424 (5)
H40.2518−0.13330.49890.051*
H50.2548−0.00330.64550.051*
C50.4672 (2)0.0257 (2)0.5695 (2)0.0386 (4)
H60.49970.14230.60920.046*
H70.5142−0.02410.63930.046*
C60.2528 (2)0.6569 (2)0.77832 (18)0.0304 (3)
H80.17360.66500.83590.036*
C70.3724 (2)0.6120 (2)0.59375 (19)0.0315 (3)
H90.39040.58250.49850.038*
C80.4887 (2)0.6696 (2)0.7135 (2)0.0352 (4)
H100.59890.68660.71590.042*
C90.4832 (3)0.7684 (3)0.9839 (2)0.0437 (5)
H110.56430.70911.00920.052*
H120.40180.75841.04410.052*
C100.5592 (2)0.9465 (3)1.0135 (2)0.0449 (5)
H130.61300.98681.11370.054*
H140.63980.95500.95230.054*
Co10.00000.50000.50000.02274 (11)
N10.09324 (17)0.27910 (17)0.43482 (15)0.0296 (3)
N20.20264 (17)0.07610 (18)0.47097 (17)0.0318 (3)
N30.22398 (16)0.60381 (16)0.63499 (15)0.0273 (3)
N40.41025 (18)0.69767 (19)0.83026 (16)0.0329 (3)
N50.8937 (2)0.6642 (2)0.02300 (18)0.0456 (4)
O10.08701 (16)0.57801 (16)0.32103 (13)0.0362 (3)
H150.12990.51430.26190.054*
H160.02150.61770.27340.054*
O20.8432 (2)0.6759 (3)0.13902 (17)0.0653 (5)
O31.0374 (3)0.7011 (3)0.0241 (2)0.0777 (6)
O40.7986 (3)0.6117 (3)−0.09384 (18)0.0784 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0368 (9)0.0342 (9)0.0280 (8)0.0154 (7)0.0043 (6)0.0069 (6)
C20.0329 (9)0.0340 (9)0.0296 (8)0.0099 (7)−0.0003 (6)0.0018 (7)
C30.0351 (9)0.0295 (8)0.0410 (10)0.0095 (7)0.0044 (7)−0.0016 (7)
C40.0378 (10)0.0439 (10)0.0616 (12)0.0199 (8)0.0163 (9)0.0325 (9)
C50.0347 (9)0.0401 (10)0.0481 (11)0.0173 (8)0.0071 (8)0.0188 (8)
C60.0275 (8)0.0326 (8)0.0281 (8)0.0071 (6)0.0016 (6)0.0040 (6)
C70.0294 (8)0.0352 (9)0.0289 (8)0.0104 (7)0.0043 (6)0.0050 (6)
C80.0252 (8)0.0408 (9)0.0361 (9)0.0074 (7)0.0022 (7)0.0052 (7)
C90.0417 (10)0.0535 (12)0.0264 (9)0.0104 (9)−0.0092 (7)0.0006 (8)
C100.0347 (10)0.0518 (12)0.0331 (10)0.0069 (8)−0.0095 (7)−0.0068 (8)
Co10.02260 (16)0.02296 (16)0.02042 (16)0.00763 (11)−0.00069 (10)0.00224 (11)
N10.0317 (7)0.0279 (7)0.0289 (7)0.0123 (6)0.0024 (5)0.0046 (5)
N20.0292 (7)0.0300 (7)0.0415 (8)0.0124 (6)0.0095 (6)0.0137 (6)
N30.0256 (7)0.0269 (7)0.0267 (7)0.0074 (5)−0.0003 (5)0.0034 (5)
N40.0286 (7)0.0367 (8)0.0273 (7)0.0071 (6)−0.0034 (5)0.0017 (6)
N50.0577 (11)0.0593 (11)0.0302 (8)0.0315 (9)0.0132 (7)0.0166 (7)
O10.0396 (7)0.0424 (7)0.0261 (6)0.0096 (5)0.0033 (5)0.0091 (5)
O20.0727 (12)0.0991 (15)0.0351 (8)0.0308 (11)0.0235 (8)0.0233 (9)
O30.0612 (12)0.1029 (17)0.0649 (12)0.0139 (11)0.0261 (10)0.0096 (11)
O40.0786 (13)0.1321 (19)0.0324 (8)0.0623 (13)0.0048 (8)0.0143 (10)

Geometric parameters (Å, °)

C1—N11.318 (2)C8—N41.373 (2)
C1—N21.341 (2)C8—H100.9300
C1—H10.9300C9—N41.470 (2)
C2—C31.350 (3)C9—C101.523 (3)
C2—N11.379 (2)C9—H110.9700
C2—H20.9300C9—H120.9700
C3—N21.366 (3)C10—C10ii1.521 (4)
C3—H30.9300C10—H130.9700
C4—N21.469 (2)C10—H140.9700
C4—C51.519 (3)Co1—N32.109 (2)
C4—H40.9700Co1—N3iii2.109 (2)
C4—H50.9700Co1—N1iii2.1697 (18)
C5—C5i1.510 (4)Co1—N12.1697 (18)
C5—H60.9700Co1—O1iii2.1838 (16)
C5—H70.9700Co1—O12.1838 (16)
C6—N31.322 (2)N5—O31.222 (3)
C6—N41.339 (2)N5—O21.238 (2)
C6—H80.9300N5—O41.243 (3)
C7—C81.360 (3)O1—H150.8501
C7—N31.377 (2)O1—H160.8500
C7—H90.9300
N1—C1—N2112.01 (16)C9—C10—H13108.7
N1—C1—H1124.0C10ii—C10—H14108.7
N2—C1—H1124.0C9—C10—H14108.7
C3—C2—N1110.00 (16)H13—C10—H14107.6
C3—C2—H2125.0N3—Co1—N3iii180.0
N1—C2—H2125.0N3—Co1—N1iii93.01 (7)
C2—C3—N2106.29 (15)N3iii—Co1—N1iii86.99 (7)
C2—C3—H3126.9N3—Co1—N186.99 (7)
N2—C3—H3126.9N3iii—Co1—N193.01 (7)
N2—C4—C5113.21 (16)N1iii—Co1—N1180.0
N2—C4—H4108.9N3—Co1—O1iii89.33 (7)
C5—C4—H4108.9N3iii—Co1—O1iii90.67 (7)
N2—C4—H5108.9N1iii—Co1—O1iii89.79 (6)
C5—C4—H5108.9N1—Co1—O1iii90.21 (6)
H4—C4—H5107.8N3—Co1—O190.67 (7)
C5i—C5—C4113.9 (2)N3iii—Co1—O189.33 (7)
C5i—C5—H6108.8N1iii—Co1—O190.21 (6)
C4—C5—H6108.8N1—Co1—O189.79 (6)
C5i—C5—H7108.8O1iii—Co1—O1180.0
C4—C5—H7108.8C1—N1—C2104.72 (15)
H6—C5—H7107.7C1—N1—Co1121.60 (12)
N3—C6—N4111.57 (16)C2—N1—Co1133.01 (12)
N3—C6—H8124.2C1—N2—C3106.97 (15)
N4—C6—H8124.2C1—N2—C4124.90 (17)
C8—C7—N3109.66 (16)C3—N2—C4128.10 (16)
C8—C7—H9125.2C6—N3—C7105.41 (14)
N3—C7—H9125.2C6—N3—Co1127.19 (12)
C7—C8—N4105.97 (16)C7—N3—Co1126.95 (12)
C7—C8—H10127.0C6—N4—C8107.39 (15)
N4—C8—H10127.0C6—N4—C9125.56 (17)
N4—C9—C10110.98 (17)C8—N4—C9126.96 (16)
N4—C9—H11109.4O3—N5—O2119.7 (2)
C10—C9—H11109.4O3—N5—O4120.4 (2)
N4—C9—H12109.4O2—N5—O4119.8 (2)
C10—C9—H12109.4Co1—O1—H15119.0
H11—C9—H12108.0Co1—O1—H16115.0
C10ii—C10—C9114.1 (2)H15—O1—H16109.0
C10ii—C10—H13108.7

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+2, −z+2; (iii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H15···O4iv0.851.942.775 (3)167
O1—H16···O2v0.852.092.930 (3)171

Symmetry codes: (iv) −x+1, −y+1, −z; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2547).

References

  • Dong, G.-C. & Zhang, R.-C. (2006). Acta Cryst. E62, m1847–m1849.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Ma, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem.42, 7531–7534. [PubMed]
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yu, Y.-H., Shi, A.-E., Su, Y., Hou, G.-F. & Gao, J.-S. (2008). Acta Cryst. E64, m628. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography