PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o486–o487.
Published online 2009 February 6. doi:  10.1107/S1600536809002189
PMCID: PMC2968523

2-Fluoro-N-(2-fluoro­benzo­yl)-N-(2-pyrid­yl)benzamide

Abstract

The title compound, C19H12F2N2O2, a 2:1 product of the reaction of 2-fluoro­benzoyl chloride and 2-amino­pyridine, crystallizes with a disordered 2-fluoro­benzene ring adopting two conformations [ratio of occupancies = 0.930 (4):0.070 (4)] in one of the two independent mol­ecules (differing slightly in conformation) comprising the asymmetric unit. In the crystal structure, C—H(...)O and C—H(...)π(arene) inter­actions are present.

Related literature

For background information, see: Donnelly et al. (2008 [triangle]); Gallagher et al. (2008 [triangle], 2009 [triangle]); McMahon et al. (2008 [triangle]); Moody et al. (1998 [triangle]). For the parent compound, 2-(dibenzoyl­amino)­pyridine, see: Weng et al. (2006 [triangle]). For related structures, see: Akinboye, Butcher, Brandy et al. (2009 [triangle]); Akinboye, Butcher, Wright et al. (2009 [triangle]); Usman et al. (2002a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o486-scheme1.jpg

Experimental

Crystal data

  • C19H12F2N2O2
  • M r = 338.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o486-efi1.jpg
  • a = 8.7421 (3) Å
  • b = 20.4270 (8) Å
  • c = 17.8175 (5) Å
  • β = 104.145 (2)°
  • V = 3085.29 (18) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 150 (1) K
  • 0.30 × 0.14 × 0.12 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.850, T max = 0.988
  • 7253 measured reflections
  • 7044 independent reflections
  • 3758 reflections with I > 2σ(I)
  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.150
  • S = 0.99
  • 7044 reflections
  • 461 parameters
  • 12 restraints
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: KappaCCD Server Software (Nonius, 1997 [triangle]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and SORTX (McArdle, 1995 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002189/tk2358sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002189/tk2358Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JFG thanks Dublin City University for grants in aid of undergraduate research. Thanks especially to Mr Damien McGuirk for providing excellent technical support in the undergraduate research laboratories

supplementary crystallographic information

Comment

Our group is completing a structural systematic study of fluoro-N'-(pyridyl)benzamide isomers (Donnelly et al., 2008) and we are adding to our research with the analogous difluoro-N-(pyridyl)benzamide series (McMahon et al., 2008) (Scheme 1).

In the chemical synthesis of either the mono- or di-fluoro derivatives and when using the ortho-aminopyridine, two products can be isolated as either the 1:1 or 2:1 benzoyl:pyridine components and with yields and ratios depending on the reaction conditions. We have reported on the structure of the 1:1 derivative namely 2,3-difluoro-N-(2-pyridyl)benzamide (Gallagher et al., 2008) and report herein a 2:1 relative of this type of compound, namely 2-fluoro-N-(2-fluorobenzoyl)-N-(2-pyridyl)benzamide (I) (Figs 1, 2).

The parent compound 2-(dibenzoylamino)pyridine has been reported previously (Weng et al., 2006) as well as the closely related compounds, N,N-dibenzoyl-4-chloroaniline and 4-Acetyl-N,N-dibenzoylphenylamine (Usman et al., 2002a,b). A review of the literature suggests that structures of this type are rare despite the large number of substituted benzamides reported. Recently, the crystal structures of two compounds N-(3-bromo-1,4-dioxo-1,4-dihydro-2-naphthyl)-2-chloro-N-(2-chlorobenzoyl)benzamide & N-(3-bromo-1,4-dioxo-1,4-dihydro-2-naphthyl)-4-fluoro-N-(4-fluorobenzoyl)benzamide have been reported (Akinboye, Butcher, Brandy et al., 2009; Akinboye, Butcher, Wright et al., 2009) but these differ substantially from (I) in the quinone scaffold or more specifically in the chloro-1,4-naphthoquinone skeleton.

Compound (I) crystallizes with two independent molecules A and B in the asymmetric unit that differ slightly in conformation as depicted in the overlay diagram, Fig. 3. The interesting differences between molecules A and B in (I) can readily be compared with (II) 3-fluoro-N-(3-fluorobenzoyl)-N-(2-pyridyl)benzamide (Gallagher et al., 2008) and the parent structure 2-(dibenzoylamino)pyridine reported by Weng et al. (2006).

In (I), the subtle differences between molecules (A) and (B) are mainly centred about the N1A/N1B tri-substituted C atoms. For example the N1—C2 bond lengths are 1.422 (3) and 1.399 (3) Å, i.e. differ by greater than 0.02 Å, whereas the N1—C1/N1—C21 pair are similar at 1.414 (3)/1.439 (3) Å and 1.419 (3)/1.444 (3) Å in molecules A and B, respectively. The related 3-fluoro structure (II) has bond lengths of 1.420 (3)/1.420 (3)/1.448 (3) Å for the analagous bonds and highlights the short N1B—C2B bond length.

The C1—N1—C2 angles are similar, i.e. 121.35 (18)°/121.40 (18)°, but the C1—N1—C21/C2—N1—C21 angle pair are 118.44 (16)°/117.10 (17)° and 116.97 (16)°/120.51 (17)° in A and B, respectively, highlighting both the similarity of the C1—N1—C21/C2—N1—C21 angle pair in A and the 3.5° angle difference in molecule B, as well as the difference in the C2—N1—C21 angle between A and B. The differences in bond lengths and angles must be mainly attributed to crystal packing forces and also the orientational differences of the benzoyl groups at C2A and C2B which can lead to possible and slightly different delocalization along the O2=C2—N1 moiety in A and B. A slight distortion in the N1—C21—C26 angles at 121.0 (2) (A) and 118.6 (2)° (B) is also noted.

The packing distortions also manifest in the C6 and C5N rings with respect to the central groups to which they are attached. The angles for C1—C11···C14 are 177.51 (17)/169.21 (15)° and the C2—C31···C34 angles are 172.26 (15)/175.25 (16)° in molecules A and B, respectively, highlighting aromatic ring bending differences of > 8° present in the former angle. The corresponding deformation angles in (II) are 176.97 (16) and 174.78 (17)°. In (I), the N1—C21···C24 angles are 177.20 (18) and 179.70 (17)° with little distortion of this central aromatic group with respect to the molecular backbone, Fig. 4.

In the crystal structure, there are no classical hydrogen bonds and interactions comprise weak C—H···O and C—H···π(arene) interactions, Table 1.

Experimental

Compound (I) was synthesized via standard condensation procedures and similar to the related syntheses reported by us (Donnelly et al., 2008; McMahon et al., 2008). Separation of the 1:1 and 2:1 derivatives was undertaken by using flash chromatography using CHCl3:ethyl acetate. Typical organic workup and washing gave the product (I) in modest yield of 30–40% as a 2:1 component of the mixture. Crystals suitable for X-ray diffraction were grown from CHCl3 as colourless blocks over a period of 1–2 weeks and gave a melting point of 367–371 K. The compounds gave clean 1H and 13C NMR spectra in CDCl3 solution. IR (νC=O cm-1): 1715, 1688(s, br), (CHCl3); 1710, 1698(s) (KBr).

Refinement

In the final stages of refinement it was observed that there was electron density consistent with a partial occupancy F atom in a position expected for a minor orientation (site) of the F32A F atom position as F36A. This new site only necessitates rotation by 180° about the C2A—C31A axis in a group that is not engaged in strong hydrogen bonding and is relatively free to rotate.

The minor F36A site was treated initially with isotropic displacement values and in the final refinement cycles was restrained by DELU/ISOR restraints of 0.1 (for F32A, F36A). The final refinement cycles gave site occupancy values of 0.930 (4):0.070 (4). As the major and minor sites for the C6 ring essentially coincide it was decided to retain the major orientation with 100% occupancy for use with the restraints.

The H atoms attached to C atoms were treated as riding with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of molecule A in (I) with the atomic numbering scheme. The disordered components F32A and F36A are retained. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A view of molecule B in (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 3.
An overlay of molecules A (red) and B (black) in (I) with the disordered F32A/F36A sites and also the F32B atom removed for clarity.
Fig. 4.
The major differences in bond length and angle between molecules A (red) and B (blue).

Crystal data

C19H12F2N2O2F(000) = 1392
Mr = 338.31Dx = 1.457 Mg m3
Monoclinic, P21/cMelting point: 367 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.7421 (3) ÅCell parameters from 8844 reflections
b = 20.4270 (8) Åθ = 2.6–27.5°
c = 17.8175 (5) ŵ = 0.11 mm1
β = 104.145 (2)°T = 150 K
V = 3085.29 (18) Å3Block, colourless
Z = 80.30 × 0.14 × 0.12 mm

Data collection

Nonius KappaCCD diffractometer7044 independent reflections
Radiation source: fine-focus sealed X-ray tube3758 reflections with I > 2σ(I)
graphiteRint = 0.073
[var phi], and ω scans with κ offsetsθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan (SORTAV; Blessing, 1995)h = −11→10
Tmin = 0.850, Tmax = 0.988k = −26→26
7253 measured reflectionsl = −19→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0741P)2] where P = (Fo2 + 2Fc2)/3
7044 reflections(Δ/σ)max < 0.001
461 parametersΔρmax = 0.29 e Å3
12 restraintsΔρmin = −0.35 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
F12A0.92767 (18)0.06141 (7)0.57392 (7)0.0448 (4)
O1A0.9098 (2)0.11920 (8)0.36102 (9)0.0388 (5)
C1A0.8666 (3)0.11698 (11)0.42060 (12)0.0275 (5)
N1A0.8933 (2)0.17057 (9)0.47236 (10)0.0253 (4)
C11A0.7887 (3)0.05768 (11)0.44252 (12)0.0258 (5)
C12A0.8199 (3)0.03140 (11)0.51633 (13)0.0297 (6)
C13A0.7479 (3)−0.02385 (12)0.53475 (14)0.0359 (6)
C14A0.6365 (3)−0.05401 (13)0.47674 (17)0.0418 (7)
C15A0.6029 (3)−0.03026 (13)0.40146 (16)0.0420 (7)
C16A0.6804 (3)0.02463 (12)0.38468 (14)0.0342 (6)
C21A0.9919 (3)0.22331 (11)0.45829 (11)0.0236 (5)
N22A0.9235 (2)0.28159 (9)0.45101 (10)0.0287 (5)
C23A1.0123 (3)0.33207 (12)0.43746 (13)0.0342 (6)
C24A1.1639 (3)0.32577 (13)0.42965 (13)0.0349 (6)
C25A1.2317 (3)0.26415 (13)0.43804 (13)0.0352 (6)
C26A1.1448 (3)0.21177 (12)0.45259 (13)0.0321 (6)
O2A0.65467 (19)0.16567 (8)0.50477 (8)0.0318 (4)
C2A0.7900 (3)0.18421 (11)0.52090 (12)0.0245 (5)
C31A0.8623 (3)0.21946 (11)0.59384 (12)0.0232 (5)
C32A0.7764 (3)0.26714 (11)0.62237 (12)0.0265 (5)
C33A0.8292 (3)0.29479 (11)0.69417 (13)0.0298 (6)
C34A0.9731 (3)0.27489 (12)0.74019 (13)0.0296 (6)
C35A1.0635 (3)0.22887 (11)0.71327 (12)0.0270 (5)
C36A1.0083 (3)0.20202 (11)0.64032 (13)0.0269 (5)
F32A0.63827 (17)0.28808 (7)0.57553 (8)0.0344 (5)0.930 (4)
F36A1.116 (2)0.1620 (10)0.6169 (10)0.039 (7)0.070 (4)
F12B0.31068 (16)0.18071 (7)0.12221 (7)0.0369 (4)
O1B0.3159 (2)0.12056 (8)0.33481 (8)0.0338 (4)
C1B0.3604 (3)0.12421 (11)0.27555 (12)0.0255 (5)
N1B0.3322 (2)0.07118 (9)0.22248 (10)0.0226 (4)
C11B0.4330 (3)0.18597 (11)0.25606 (12)0.0228 (5)
C12B0.3982 (3)0.21466 (11)0.18366 (12)0.0261 (5)
C13B0.4425 (3)0.27768 (12)0.17050 (14)0.0331 (6)
C14B0.5283 (3)0.31302 (12)0.23274 (15)0.0369 (6)
C15B0.5697 (3)0.28541 (12)0.30609 (14)0.0343 (6)
C16B0.5208 (3)0.22290 (12)0.31764 (12)0.0276 (6)
O2B0.57182 (18)0.07792 (8)0.19299 (8)0.0287 (4)
C2B0.4384 (3)0.05560 (11)0.17782 (12)0.0226 (5)
C21B0.2073 (3)0.02639 (11)0.22749 (12)0.0240 (5)
N22B0.2476 (2)−0.03583 (9)0.23967 (10)0.0266 (5)
C23B0.1297 (3)−0.07729 (12)0.24352 (13)0.0303 (6)
C24B−0.0238 (3)−0.05737 (12)0.23712 (13)0.0297 (6)
C25B−0.0610 (3)0.00756 (12)0.22546 (13)0.0313 (6)
C26B0.0564 (3)0.05108 (12)0.21966 (13)0.0282 (6)
F32B0.59097 (16)−0.05992 (7)0.15023 (8)0.0399 (4)
C31B0.3775 (3)0.01289 (11)0.10932 (12)0.0231 (5)
C32B0.4601 (3)−0.04192 (11)0.09556 (13)0.0268 (5)
C33B0.4133 (3)−0.07992 (12)0.03030 (14)0.0329 (6)
C34B0.2801 (3)−0.06149 (12)−0.02500 (13)0.0322 (6)
C35B0.1943 (3)−0.00704 (12)−0.01392 (13)0.0301 (6)
C36B0.2418 (3)0.02922 (12)0.05330 (12)0.0272 (5)
H13A0.7738−0.04090.58590.043*
H14A0.5822−0.09150.48840.050*
H15A0.5271−0.05170.36170.050*
H16A0.65950.04010.33290.041*
H23A0.96720.37460.43300.041*
H24A1.22080.36270.41880.042*
H25A1.33700.25820.43380.042*
H26A1.18820.16890.45860.039*
H32A0.67780.28090.59080.032*0.070 (4)
H33A0.76820.32700.71200.036*
H34A1.01010.29290.79050.036*
H35A1.16280.21580.74480.032*
H36A1.07160.17110.62180.032*0.930 (4)
H13B0.41480.29620.12010.040*
H14B0.55930.35660.22530.044*
H15B0.63160.30960.34830.041*
H16B0.54720.20470.36820.033*
H23B0.1536−0.12260.25100.036*
H24B−0.1027−0.08830.24080.036*
H25B−0.16570.02240.22140.038*
H26B0.03470.09640.21060.034*
H33B0.4711−0.11790.02340.039*
H34B0.2472−0.0865−0.07110.039*
H35B0.10300.0054−0.05230.036*
H36B0.18090.06590.06140.033*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F12A0.0657 (11)0.0363 (9)0.0259 (7)−0.0103 (8)−0.0013 (7)0.0017 (6)
O1A0.0593 (13)0.0352 (11)0.0259 (9)−0.0102 (9)0.0179 (8)−0.0037 (8)
C1A0.0307 (14)0.0275 (14)0.0235 (12)−0.0019 (11)0.0050 (10)0.0008 (10)
N1A0.0333 (12)0.0219 (11)0.0227 (10)−0.0053 (9)0.0106 (8)−0.0023 (8)
C11A0.0302 (14)0.0217 (13)0.0266 (12)−0.0002 (11)0.0089 (10)−0.0014 (10)
C12A0.0373 (15)0.0245 (14)0.0269 (12)−0.0012 (12)0.0074 (11)−0.0011 (10)
C13A0.0472 (17)0.0249 (14)0.0397 (14)0.0030 (13)0.0186 (13)0.0065 (11)
C14A0.0358 (16)0.0250 (15)0.0669 (19)−0.0029 (12)0.0169 (14)0.0046 (13)
C15A0.0334 (16)0.0279 (16)0.0592 (18)−0.0049 (12)0.0006 (13)−0.0053 (13)
C16A0.0368 (15)0.0296 (15)0.0324 (13)0.0016 (12)0.0009 (11)−0.0026 (11)
C21A0.0315 (14)0.0205 (13)0.0194 (11)−0.0035 (11)0.0071 (10)−0.0006 (9)
N22A0.0347 (12)0.0244 (12)0.0278 (10)−0.0027 (9)0.0092 (9)0.0010 (8)
C23A0.0446 (17)0.0252 (14)0.0323 (13)−0.0037 (12)0.0084 (11)0.0034 (11)
C24A0.0375 (16)0.0368 (17)0.0309 (13)−0.0140 (13)0.0095 (11)−0.0027 (11)
C25A0.0318 (15)0.0418 (17)0.0349 (14)−0.0049 (13)0.0137 (11)−0.0055 (12)
C26A0.0338 (15)0.0306 (15)0.0330 (13)0.0002 (12)0.0103 (11)−0.0019 (11)
O2A0.0271 (10)0.0336 (10)0.0347 (9)−0.0057 (8)0.0073 (7)−0.0030 (7)
C2A0.0285 (14)0.0199 (13)0.0254 (12)0.0004 (11)0.0074 (10)0.0025 (9)
C31A0.0254 (13)0.0214 (13)0.0252 (11)−0.0034 (10)0.0107 (10)0.0006 (9)
C32A0.0248 (13)0.0260 (14)0.0289 (12)−0.0008 (11)0.0070 (10)0.0041 (10)
C33A0.0383 (16)0.0238 (14)0.0308 (13)0.0015 (11)0.0148 (11)−0.0040 (10)
C34A0.0370 (15)0.0306 (15)0.0232 (12)−0.0077 (12)0.0109 (11)−0.0041 (10)
C35A0.0279 (14)0.0279 (14)0.0249 (12)−0.0020 (11)0.0056 (10)−0.0006 (10)
C36A0.0297 (14)0.0236 (13)0.0305 (12)−0.0014 (11)0.0134 (11)−0.0013 (10)
F32A0.0323 (10)0.0337 (10)0.0364 (9)0.0058 (7)0.0067 (7)0.0020 (7)
F36A0.049 (10)0.041 (10)0.028 (9)0.007 (7)0.009 (7)−0.010 (7)
F12B0.0475 (9)0.0340 (9)0.0248 (7)−0.0040 (7)0.0002 (6)0.0016 (6)
O1B0.0453 (11)0.0324 (10)0.0273 (9)−0.0073 (8)0.0159 (8)−0.0026 (7)
C1B0.0245 (13)0.0264 (14)0.0246 (12)0.0022 (11)0.0040 (10)−0.0003 (10)
N1B0.0238 (11)0.0220 (11)0.0236 (10)−0.0032 (8)0.0087 (8)−0.0031 (8)
C11B0.0220 (12)0.0199 (13)0.0272 (12)0.0028 (10)0.0073 (10)−0.0008 (10)
C12B0.0262 (14)0.0254 (14)0.0259 (12)−0.0004 (10)0.0048 (10)−0.0012 (10)
C13B0.0346 (15)0.0286 (15)0.0373 (14)0.0027 (12)0.0112 (12)0.0057 (11)
C14B0.0344 (16)0.0231 (15)0.0543 (17)−0.0028 (12)0.0130 (13)0.0028 (12)
C15B0.0288 (15)0.0289 (15)0.0428 (15)−0.0039 (11)0.0043 (11)−0.0089 (11)
C16B0.0258 (13)0.0291 (14)0.0267 (12)0.0024 (11)0.0041 (10)−0.0017 (10)
O2B0.0230 (10)0.0303 (10)0.0324 (9)−0.0024 (8)0.0061 (7)−0.0030 (7)
C2B0.0226 (13)0.0181 (12)0.0266 (12)0.0027 (10)0.0051 (10)0.0035 (9)
C21B0.0282 (14)0.0243 (14)0.0205 (11)−0.0017 (11)0.0081 (9)−0.0014 (9)
N22B0.0271 (11)0.0230 (12)0.0300 (10)−0.0004 (9)0.0076 (8)0.0016 (8)
C23B0.0314 (15)0.0214 (13)0.0385 (14)−0.0021 (11)0.0093 (11)0.0051 (11)
C24B0.0265 (14)0.0324 (15)0.0302 (13)−0.0038 (11)0.0066 (10)0.0026 (11)
C25B0.0247 (14)0.0377 (16)0.0320 (13)0.0000 (12)0.0077 (10)−0.0031 (11)
C26B0.0269 (14)0.0223 (13)0.0350 (13)0.0041 (11)0.0069 (10)−0.0016 (10)
F32B0.0325 (8)0.0372 (9)0.0440 (8)0.0094 (7)−0.0021 (7)−0.0055 (7)
C31B0.0249 (13)0.0213 (13)0.0247 (11)−0.0005 (10)0.0092 (10)0.0012 (9)
C32B0.0214 (13)0.0289 (14)0.0294 (12)−0.0007 (11)0.0050 (10)0.0001 (10)
C33B0.0351 (16)0.0282 (14)0.0369 (14)0.0022 (12)0.0117 (12)−0.0081 (11)
C34B0.0336 (15)0.0353 (16)0.0276 (13)−0.0044 (12)0.0076 (11)−0.0082 (11)
C35B0.0271 (14)0.0335 (15)0.0273 (12)−0.0007 (12)0.0020 (10)0.0016 (11)
C36B0.0239 (13)0.0298 (14)0.0282 (12)0.0026 (11)0.0070 (10)−0.0006 (10)

Geometric parameters (Å, °)

F12A—C12A1.358 (3)F12B—C12B1.362 (2)
O1A—C1A1.211 (2)O1B—C1B1.214 (2)
C1A—N1A1.414 (3)C1B—N1B1.419 (3)
C1A—C11A1.488 (3)C1B—C11B1.491 (3)
N1A—C2A1.422 (3)N1B—C2B1.399 (3)
N1A—C21A1.439 (3)N1B—C21B1.444 (3)
C11A—C12A1.385 (3)C11B—C12B1.381 (3)
C11A—C16A1.392 (3)C11B—C16B1.397 (3)
C12A—C13A1.371 (3)C12B—C13B1.381 (3)
C13A—C14A1.380 (4)C13B—C14B1.381 (3)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.389 (4)C14B—C15B1.388 (3)
C14A—H14A0.9500C14B—H14B0.9500
C15A—C16A1.380 (3)C15B—C16B1.378 (3)
C15A—H15A0.9500C15B—H15B0.9500
C16A—H16A0.9500C16B—H16B0.9500
O2A—C2A1.208 (3)O2B—C2B1.220 (3)
C2A—C31A1.485 (3)C2B—C31B1.489 (3)
C21A—N22A1.324 (3)C21B—N22B1.323 (3)
C21A—C26A1.385 (3)C21B—C26B1.387 (3)
N22A—C23A1.348 (3)N22B—C23B1.349 (3)
C23A—C24A1.372 (4)C23B—C24B1.380 (3)
C23A—H23A0.9500C23B—H23B0.9500
C24A—C25A1.384 (3)C24B—C25B1.369 (3)
C24A—H24A0.9500C24B—H24B0.9500
C25A—C26A1.373 (3)C25B—C26B1.381 (3)
C25A—H25A0.9500C25B—H25B0.9500
C26A—H26A0.9500C26B—H26B0.9500
C31A—C36A1.388 (3)F32B—C32B1.360 (3)
C31A—C32A1.399 (3)C31B—C32B1.386 (3)
C32A—C33A1.371 (3)C31B—C36B1.391 (3)
C32A—H32A0.9500C32B—C33B1.374 (3)
C33A—C34A1.384 (3)C33B—C34B1.381 (3)
C33A—H33A0.9500C33B—H33B0.9500
C34A—C35A1.387 (3)C34B—C35B1.383 (3)
C34A—H34A0.9500C34B—H34B0.9500
C35A—C36A1.384 (3)C35B—C36B1.383 (3)
C35A—H35A0.9500C35B—H35B0.9500
C36A—H36A0.9500C36B—H36B0.9500
O1A—C1A—N1A120.4 (2)O1B—C1B—N1B119.5 (2)
O1A—C1A—C11A121.4 (2)O1B—C1B—C11B119.99 (19)
N1A—C1A—C11A118.18 (18)N1B—C1B—C11B120.36 (18)
C1A—N1A—C2A121.35 (18)C2B—N1B—C1B121.40 (18)
C1A—N1A—C21A118.44 (16)C2B—N1B—C21B120.51 (17)
C2A—N1A—C21A117.10 (17)C1B—N1B—C21B116.97 (16)
C12A—C11A—C16A117.1 (2)C12B—C11B—C16B117.3 (2)
C12A—C11A—C1A124.6 (2)C12B—C11B—C1B124.6 (2)
C16A—C11A—C1A118.2 (2)C16B—C11B—C1B117.23 (19)
F12A—C12A—C13A117.7 (2)F12B—C12B—C13B117.6 (2)
F12A—C12A—C11A118.8 (2)F12B—C12B—C11B119.1 (2)
C13A—C12A—C11A123.4 (2)C13B—C12B—C11B123.2 (2)
C12A—C13A—C14A118.0 (2)C14B—C13B—C12B118.1 (2)
C12A—C13A—H13A121.0C14B—C13B—H13B121.0
C14A—C13A—H13A121.0C12B—C13B—H13B121.0
C13A—C14A—C15A120.8 (2)C13B—C14B—C15B120.6 (2)
C13A—C14A—H14A119.6C13B—C14B—H14B119.7
C15A—C14A—H14A119.6C15B—C14B—H14B119.7
C16A—C15A—C14A119.6 (2)C16B—C15B—C14B119.9 (2)
C16A—C15A—H15A120.2C16B—C15B—H15B120.1
C14A—C15A—H15A120.2C14B—C15B—H15B120.1
C15A—C16A—C11A121.0 (2)C15B—C16B—C11B120.9 (2)
C15A—C16A—H16A119.5C15B—C16B—H16B119.5
C11A—C16A—H16A119.5C11B—C16B—H16B119.5
N22A—C21A—C26A124.5 (2)O2B—C2B—N1B121.36 (19)
N22A—C21A—N1A114.50 (19)O2B—C2B—C31B122.12 (19)
C26A—C21A—N1A121.0 (2)N1B—C2B—C31B116.47 (19)
C21A—N22A—C23A116.1 (2)N22B—C21B—C26B125.1 (2)
N22A—C23A—C24A124.0 (2)N22B—C21B—N1B116.36 (19)
N22A—C23A—H23A118.0C26B—C21B—N1B118.6 (2)
C24A—C23A—H23A118.0C21B—N22B—C23B115.8 (2)
C23A—C24A—C25A118.3 (2)N22B—C23B—C24B123.4 (2)
C23A—C24A—H24A120.9N22B—C23B—H23B118.3
C25A—C24A—H24A120.9C24B—C23B—H23B118.3
C26A—C25A—C24A119.1 (2)C25B—C24B—C23B119.2 (2)
C26A—C25A—H25A120.4C25B—C24B—H24B120.4
C24A—C25A—H25A120.4C23B—C24B—H24B120.4
C25A—C26A—C21A118.0 (2)C24B—C25B—C26B118.8 (2)
C25A—C26A—H26A121.0C24B—C25B—H25B120.6
C21A—C26A—H26A121.0C26B—C25B—H25B120.6
O2A—C2A—N1A121.6 (2)C25B—C26B—C21B117.7 (2)
O2A—C2A—C31A122.89 (19)C25B—C26B—H26B121.2
N1A—C2A—C31A115.42 (19)C21B—C26B—H26B121.2
C36A—C31A—C32A117.3 (2)C32B—C31B—C36B117.2 (2)
C36A—C31A—C2A122.0 (2)C32B—C31B—C2B121.4 (2)
C32A—C31A—C2A120.3 (2)C36B—C31B—C2B121.3 (2)
C33A—C32A—C31A122.5 (2)F32B—C32B—C33B118.5 (2)
C33A—C32A—H32A118.7F32B—C32B—C31B118.4 (2)
C31A—C32A—H32A118.7C33B—C32B—C31B123.1 (2)
C32A—C33A—C34A118.8 (2)C32B—C33B—C34B118.3 (2)
C32A—C33A—H33A120.6C32B—C33B—H33B120.8
C34A—C33A—H33A120.6C34B—C33B—H33B120.8
C33A—C34A—C35A120.4 (2)C33B—C34B—C35B120.6 (2)
C33A—C34A—H34A119.8C33B—C34B—H34B119.7
C35A—C34A—H34A119.8C35B—C34B—H34B119.7
C36A—C35A—C34A119.8 (2)C34B—C35B—C36B119.7 (2)
C36A—C35A—H35A120.1C34B—C35B—H35B120.1
C34A—C35A—H35A120.1C36B—C35B—H35B120.1
C35A—C36A—C31A121.1 (2)C35B—C36B—C31B121.1 (2)
C35A—C36A—H36A119.4C35B—C36B—H36B119.5
C31A—C36A—H36A119.4C31B—C36B—H36B119.5
O1A—C1A—N1A—C2A150.7 (2)O1B—C1B—N1B—C21B21.0 (3)
C11A—C1A—N1A—C2A−31.0 (3)C11B—C1B—N1B—C21B−154.2 (2)
O1A—C1A—N1A—C21A−8.8 (3)O1B—C1B—C11B—C12B−135.7 (2)
C11A—C1A—N1A—C21A169.5 (2)N1B—C1B—C11B—C12B39.5 (3)
O1A—C1A—C11A—C12A137.7 (2)O1B—C1B—C11B—C16B32.8 (3)
N1A—C1A—C11A—C12A−40.6 (3)N1B—C1B—C11B—C16B−152.0 (2)
O1A—C1A—C11A—C16A−40.0 (3)C16B—C11B—C12B—F12B−178.99 (18)
N1A—C1A—C11A—C16A141.7 (2)C1B—C11B—C12B—F12B−10.5 (3)
C16A—C11A—C12A—F12A178.5 (2)C16B—C11B—C12B—C13B−1.7 (3)
C1A—C11A—C12A—F12A0.8 (3)C1B—C11B—C12B—C13B166.9 (2)
C16A—C11A—C12A—C13A−1.4 (4)F12B—C12B—C13B—C14B178.6 (2)
C1A—C11A—C12A—C13A−179.1 (2)C11B—C12B—C13B—C14B1.2 (4)
F12A—C12A—C13A—C14A179.0 (2)C12B—C13B—C14B—C15B0.7 (4)
C11A—C12A—C13A—C14A−1.1 (4)C13B—C14B—C15B—C16B−2.0 (4)
C12A—C13A—C14A—C15A2.2 (4)C14B—C15B—C16B—C11B1.6 (4)
C13A—C14A—C15A—C16A−0.8 (4)C12B—C11B—C16B—C15B0.2 (3)
C14A—C15A—C16A—C11A−1.8 (4)C1B—C11B—C16B—C15B−169.2 (2)
C12A—C11A—C16A—C15A2.8 (4)C1B—N1B—C2B—O2B14.6 (3)
C1A—C11A—C16A—C15A−179.3 (2)C21B—N1B—C2B—O2B−153.0 (2)
C1A—N1A—C21A—N22A123.0 (2)C1B—N1B—C2B—C31B−162.91 (19)
C2A—N1A—C21A—N22A−37.3 (3)C21B—N1B—C2B—C31B29.5 (3)
C1A—N1A—C21A—C26A−56.5 (3)C2B—N1B—C21B—N22B45.8 (3)
C2A—N1A—C21A—C26A143.2 (2)C1B—N1B—C21B—N22B−122.3 (2)
C26A—C21A—N22A—C23A−0.3 (3)C2B—N1B—C21B—C26B−134.4 (2)
N1A—C21A—N22A—C23A−179.74 (18)C1B—N1B—C21B—C26B57.5 (3)
C21A—N22A—C23A—C24A1.3 (3)C26B—C21B—N22B—C23B0.9 (3)
N22A—C23A—C24A—C25A−1.7 (4)N1B—C21B—N22B—C23B−179.40 (18)
C23A—C24A—C25A—C26A1.0 (3)C21B—N22B—C23B—C24B−1.4 (3)
C24A—C25A—C26A—C21A−0.1 (3)N22B—C23B—C24B—C25B0.7 (3)
N22A—C21A—C26A—C25A−0.3 (3)C23B—C24B—C25B—C26B0.7 (3)
N1A—C21A—C26A—C25A179.12 (19)C24B—C25B—C26B—C21B−1.2 (3)
C1A—N1A—C2A—O2A−23.5 (3)N22B—C21B—C26B—C25B0.4 (3)
C21A—N1A—C2A—O2A136.3 (2)N1B—C21B—C26B—C25B−179.31 (18)
C1A—N1A—C2A—C31A153.5 (2)O2B—C2B—C31B—C32B51.8 (3)
C21A—N1A—C2A—C31A−46.8 (3)N1B—C2B—C31B—C32B−130.8 (2)
O2A—C2A—C31A—C36A132.2 (2)O2B—C2B—C31B—C36B−123.1 (2)
N1A—C2A—C31A—C36A−44.8 (3)N1B—C2B—C31B—C36B54.4 (3)
O2A—C2A—C31A—C32A−40.7 (3)C36B—C31B—C32B—F32B−178.40 (19)
N1A—C2A—C31A—C32A142.4 (2)C2B—C31B—C32B—F32B6.5 (3)
C36A—C31A—C32A—C33A−2.1 (3)C36B—C31B—C32B—C33B−0.3 (3)
C2A—C31A—C32A—C33A171.1 (2)C2B—C31B—C32B—C33B−175.4 (2)
C31A—C32A—C33A—C34A0.1 (3)F32B—C32B—C33B—C34B179.9 (2)
C32A—C33A—C34A—C35A1.4 (3)C31B—C32B—C33B—C34B1.8 (4)
C33A—C34A—C35A—C36A−0.9 (3)C32B—C33B—C34B—C35B−1.5 (4)
C34A—C35A—C36A—C31A−1.2 (3)C33B—C34B—C35B—C36B−0.2 (4)
C32A—C31A—C36A—C35A2.6 (3)C34B—C35B—C36B—C31B1.8 (3)
C2A—C31A—C36A—C35A−170.4 (2)C32B—C31B—C36B—C35B−1.5 (3)
O1B—C1B—N1B—C2B−147.0 (2)C2B—C31B—C36B—C35B173.6 (2)
C11B—C1B—N1B—C2B37.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13A—H13A···O1Bi0.952.413.201 (3)141
C14A—H14A···O2Ai0.952.593.493 (3)158
C16A—H16A···O2B0.952.543.488 (3)174
C33A—H33A···O2Bii0.952.563.435 (3)154
C34A—H34A···O1Aii0.952.473.194 (3)133
C35A—H35A···Cg1iii0.952.883.591 (3)133
C16B—H16B···O2A0.952.513.456 (3)172
C25B—H25B···O2Biv0.952.503.434 (3)169

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z+1/2; (iii) x+1, −y+1/2, z+1/2; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2358).

References

  • Akinboye, E. S., Butcher, R. J., Brandy, Y., Adesiyun, T. A. & Bakare, O. (2009). Acta Cryst. E65, o24.
  • Akinboye, E. S., Butcher, R. J., Wright, D. A., Brandy, Y. & Bakare, O. (2009). Acta Cryst. E65, o277. [PMC free article] [PubMed]
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340. [PubMed]
  • Ferguson, G. (1998). PREP8 University of Guelph, Canada.
  • Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009). Acta Cryst. E65, o102–o103. [PMC free article] [PubMed]
  • Gallagher, J. F., McMahon, J., Anderson, F. P. & Lough, A. J. (2008). Acta Cryst. E64, o2394. [PMC free article] [PubMed]
  • McArdle, P. (1995). J. Appl. Cryst.28, 65.
  • McMahon, J., Anderson, F. P., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o493–o497. [PubMed]
  • Moody, C. J., Miah, S., Slawin, A. M. Z., Mansfield, D. J. & Richards, I. C. (1998). Tetrahedron, 54, 9689–9700.
  • Nonius (1997). KappaCCD Server Software Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002a). Acta Cryst. E58, o357–o358.
  • Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002b). Acta Cryst. E58, o377–o379.
  • Weng, Y.-B., Wang, J.-K. & Wang, Y.-F. (2006). Acta Cryst. E62, o1868–o1869.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography