PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m246.
Published online 2009 February 4. doi:  10.1107/S1600536809003390
PMCID: PMC2968522

Poly[aqua­bis(μ-benzene-1,2-dicarboxyl­ato)ethano­ltetra­lithium]

Abstract

In the crystal structure of the title compound [Li4(C8H4O4)2(C2H5OH)(H2O)]n, there are four crystallographically independent metal centers each of which is coordinated by four O atoms. The benzene-1,2-dicarboxyl­ate groups act as bidentate–bridging ligands producing a two-dimensional coordination network parallel to the ab plane. The coordination polymer is further stabilized by coordination of water and ethanol mol­ecules by the Li+ ions. Simultaneously, the water and ethanol mol­ecules are involved in O—H(...)O and C—H(...)π inter­actions.

Related literature

For related literature, see: Łyszczek et al. (2008 [triangle]); Chae et al. (2004 [triangle]); García-Zarracino et al. (2003 [triangle]); García-Zarracino & Höpfl (2004 [triangle]); García-Zarracino et al. (2008 [triangle]). For analysis of hydrogen-bonding patterns, see: Hunter (1994 [triangle]); Desiraju (1991 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m246-scheme1.jpg

Experimental

Crystal data

  • [Li4(C8H4O4)2(C2H6O)(H2O)]
  • M r = 420.07
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m246-efi1.jpg
  • a = 7.5254 (7) Å
  • b = 10.0538 (10) Å
  • c = 13.5073 (13) Å
  • α = 106.460 (2)°
  • β = 91.185 (2)°
  • γ = 103.046 (2)°
  • V = 950.84 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 293 (2) K
  • 0.49 × 0.36 × 0.06 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.945, T max = 1.000 (expected range = 0.938–0.993)
  • 10069 measured reflections
  • 3735 independent reflections
  • 3110 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.129
  • S = 1.09
  • 3735 reflections
  • 299 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus-NT (Bruker, 2001 [triangle]); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: PLATON (Spek, 2003 [triangle]) and publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003390/bt2860sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003390/bt2860Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Consejo Nacional de Ciencia y Tecnología (CIAM-59213 for HH).

supplementary crystallographic information

Comment

Metal-organic polymers are widely studied for their properties arising from the presence of a rigid framework with open channels and cavities. Frequently, such coordination polymers are constructed from metal ions and polycarboxylate linkers; however, systems containing main group elements are little explored so far (Łyszczek et al., 2008; García-Zarracino et al., 2008; Chae et al., 2004; García-Zarracino et al., 2003; García-Zarracino & Höpfl, 2004).

We describe herein the crystal structure of dilithium phthalate solvate [(C8H4O4)2Li4(H2O)(C2H5OH)]n. The asymmetric unit of the title compound contains two benzene-1,2-dicarboxylate ligands, four crystallographically independent lithium ions, an ethanol molecule and a water molecule. The four lithium ions have distorted tetrahedral coordination environments as shown in Fig. 1. The O—Li—O bond angles range from 96.90 (15) to 127.86 (19)°. The Li—O bond lengths vary from 1.901 (4) to 2.009 (4) Å, whereby it is interesting to note that the Li—O(H)Et bond is significantly shorter [1.910 (4) Å] than the remaining bonds, the only exception being Li—O1 [1.901 (4) Å]. Coordination of the crystallographically independent Li centers through bridging-bidentate benzene-1,2-dicarboxylate groups generates a two-dimensional network parallel to the ab plane (Fig. 2). In this two-dimensional coordination polymer four different LinOn ring structures can be identified: I (n= 4), II, III (n =6) and IV (n=8). It is notheworthy to mention that the COO groups in the benzene-1,2-dicarboxylate ligands adopt different coordination modes and torsion angles with respect to the corresponding aromatic ring plane: µ3 and -72.2 (3)° for C(1)OO, µ4 and -24.9 (3)° for C(8)OO, µ3 and 21.0 (3)° for C(9)OO, µ4 and 88.8 (2)° for C(16)OO.

Packing is further stabilized by ethanol and water molecules which are coordinated to Li(1) and Li(2), respectively. Both solvent molecules display O—H···O and C—H···π hydrogen bonds (Table 1, Fig. 3). The distances from the methylene (C17) and methyl (C18) groups to centroids Cg2 (C10—C15) and Cg1 (C2—C7) are 3.584 (3) and 3.572 (3) Å, respectively (Hunter, 1994; Desiraju, 1991).

Experimental

Single crystals were obtained by slow evaporation of a solution (EtOH, 15 ml) containing benzene-1,2-dicarboxylic acid (0.50 g, 3.0 mmol) and lithium hydroxide dihydrate (0.36 g, 6.0 mmol).

Refinement

Aromatic and aliphatic H atoms were positioned geometrically and constrained using the riding-model approximation [C-Haryl = 0.93 Å, Uiso(Haryl)= 1.2 Ueq(C); C-Hmethylene = 0.97 Å, Uiso(Hmethylene) = 1.2 Ueq(C); C-Hmethyl = 0.96, Uiso(Hmethyl) = 1.5 Ueq(C)]. Atoms bonded to O (H9, H10A and H10B), were located by difference Fourier maps. Their coordinates were refined with a distance restraint O—H = 0.84 Å and [Uiso(H) = 1.5 Ueq(O)].

Figures

Fig. 1.
The asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
Crystal packing of the title compound, showing the two-dimensional network parallel to the ab plane. For clarity, hydrogen and carbon atoms are omitted.
Fig. 3.
View of O—H···O and the facial C—H···π hydrogen bonds. Dashed lines indicate the vectors from the methylene (C17) and methyl (C18) groups to centroids Cg2 (C10—C15) and Cg1 ...

Crystal data

[Li4(C8H4O4)2(C2H6O)(H2O)]Z = 2
Mr = 420.07F(000) = 432
Triclinic, P1Dx = 1.467 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5254 (7) ÅCell parameters from 5811 reflections
b = 10.0538 (10) Åθ = 2.3–27.5°
c = 13.5073 (13) ŵ = 0.12 mm1
α = 106.460 (2)°T = 293 K
β = 91.185 (2)°Plate, colourless
γ = 103.046 (2)°0.49 × 0.36 × 0.06 mm
V = 950.84 (16) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer3735 independent reflections
Radiation source: fine-focus sealed tube3110 reflections with I > 2σ(I)
graphiteRint = 0.039
Detector resolution: 8.3 pixels mm-1θmax = 26.0°, θmin = 1.6°
[var phi] and ω scansh = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −12→12
Tmin = 0.945, Tmax = 1.0l = −16→16
10069 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0657P)2 + 0.0955P] where P = (Fo2 + 2Fc2)/3
3735 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.29 e Å3
3 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Li10.3218 (5)0.6867 (3)0.6127 (3)0.0274 (7)
Li20.1872 (5)0.3690 (4)0.4990 (3)0.0287 (8)
Li30.1436 (5)0.9010 (3)0.4401 (3)0.0271 (7)
Li40.4303 (5)1.1686 (4)0.5415 (3)0.0277 (7)
O10.51646 (19)0.40347 (14)0.33549 (11)0.0311 (4)
H90.0361 (13)0.716 (3)0.6978 (19)0.047*
O20.60250 (18)0.63805 (14)0.41291 (11)0.0277 (3)
O30.21664 (18)0.55545 (14)0.47330 (10)0.0263 (3)
O40.05081 (18)0.70170 (14)0.44799 (11)0.0277 (3)
O50.20599 (18)1.05156 (15)0.57359 (10)0.0272 (3)
O6−0.02639 (18)1.04904 (15)0.67106 (11)0.0313 (4)
O70.60652 (17)1.08648 (14)0.60341 (10)0.0251 (3)
O80.48228 (19)0.86333 (14)0.60088 (11)0.0286 (3)
O90.1425 (2)0.7081 (2)0.71036 (12)0.0434 (4)
O100.1786 (2)0.24140 (16)0.35725 (13)0.0355 (4)
H10A0.2810 (17)0.269 (3)0.3365 (19)0.053*
H10B0.155 (4)0.1522 (4)0.345 (2)0.053*
C10.5022 (3)0.5289 (2)0.34916 (15)0.0224 (4)
C20.3625 (3)0.5497 (2)0.27672 (15)0.0236 (4)
C30.3998 (3)0.5279 (2)0.17410 (17)0.0351 (5)
H30.50510.49830.15310.042*
C40.2845 (4)0.5489 (3)0.10264 (17)0.0408 (6)
H40.31240.53450.03420.049*
C50.1273 (4)0.5915 (2)0.13316 (18)0.0414 (6)
H50.04820.60520.08520.050*
C60.0877 (3)0.6136 (2)0.23443 (16)0.0314 (5)
H6−0.01790.64330.25450.038*
C70.2028 (3)0.59242 (19)0.30770 (15)0.0227 (4)
C80.1526 (2)0.6171 (2)0.41697 (15)0.0220 (4)
C90.1401 (3)1.05967 (19)0.65956 (15)0.0226 (4)
C100.2681 (3)1.0844 (2)0.75287 (15)0.0254 (4)
C110.2166 (3)1.1396 (2)0.85110 (17)0.0360 (5)
H110.10301.16150.85790.043*
C120.3293 (4)1.1626 (3)0.93858 (18)0.0446 (6)
H120.29241.19981.00380.054*
C130.4977 (4)1.1299 (3)0.92891 (18)0.0453 (6)
H130.57471.14500.98780.054*
C140.5521 (3)1.0751 (2)0.83213 (17)0.0348 (5)
H140.66541.05250.82620.042*
C150.4401 (3)1.0531 (2)0.74352 (15)0.0237 (4)
C160.5114 (2)0.9964 (2)0.64110 (15)0.0214 (4)
C170.1858 (3)0.7394 (3)0.81807 (18)0.0484 (7)
H17A0.29740.81480.83910.058*
H17B0.20910.65520.83220.058*
C180.0380 (4)0.7851 (3)0.8815 (2)0.0621 (8)
H18A0.01260.86750.86710.093*
H18B0.07720.80850.95380.093*
H18C−0.07080.70870.86440.093*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Li10.0269 (18)0.0260 (18)0.0314 (19)0.0084 (14)0.0015 (14)0.0105 (15)
Li20.0232 (18)0.0280 (18)0.036 (2)0.0073 (14)−0.0001 (14)0.0106 (15)
Li30.0244 (18)0.0259 (17)0.0326 (19)0.0064 (14)0.0026 (14)0.0107 (15)
Li40.0256 (18)0.0272 (18)0.0328 (19)0.0062 (14)0.0019 (15)0.0129 (15)
O10.0299 (8)0.0243 (8)0.0430 (9)0.0112 (6)0.0011 (7)0.0123 (6)
O20.0221 (7)0.0252 (7)0.0357 (8)0.0050 (6)−0.0027 (6)0.0096 (6)
O30.0260 (8)0.0268 (7)0.0299 (8)0.0089 (6)0.0005 (6)0.0126 (6)
O40.0228 (7)0.0253 (7)0.0397 (9)0.0102 (6)0.0086 (6)0.0131 (6)
O50.0222 (7)0.0308 (8)0.0277 (8)0.0048 (6)0.0016 (6)0.0088 (6)
O60.0184 (8)0.0384 (9)0.0428 (9)0.0116 (6)0.0064 (6)0.0167 (7)
O70.0162 (7)0.0272 (7)0.0345 (8)0.0047 (6)0.0019 (6)0.0137 (6)
O80.0335 (8)0.0217 (7)0.0341 (8)0.0109 (6)0.0055 (6)0.0101 (6)
O90.0273 (9)0.0688 (12)0.0372 (9)0.0183 (8)0.0039 (7)0.0150 (8)
O100.0246 (8)0.0303 (8)0.0503 (10)0.0066 (7)0.0062 (7)0.0095 (8)
C10.0175 (10)0.0254 (10)0.0279 (11)0.0076 (8)0.0073 (8)0.0111 (8)
C20.0238 (10)0.0194 (10)0.0271 (11)0.0040 (8)0.0005 (8)0.0071 (8)
C30.0369 (13)0.0377 (12)0.0337 (12)0.0132 (10)0.0081 (10)0.0117 (10)
C40.0558 (16)0.0444 (14)0.0243 (12)0.0123 (12)0.0024 (11)0.0132 (10)
C50.0521 (15)0.0398 (13)0.0336 (13)0.0143 (12)−0.0121 (11)0.0113 (10)
C60.0301 (12)0.0278 (11)0.0365 (13)0.0114 (9)−0.0063 (9)0.0071 (9)
C70.0223 (10)0.0177 (9)0.0280 (11)0.0045 (8)−0.0026 (8)0.0071 (8)
C80.0154 (9)0.0192 (9)0.0305 (11)0.0019 (7)−0.0009 (8)0.0077 (8)
C90.0212 (10)0.0172 (9)0.0317 (11)0.0069 (8)0.0034 (8)0.0093 (8)
C100.0259 (11)0.0226 (10)0.0294 (11)0.0067 (8)0.0040 (8)0.0097 (8)
C110.0340 (13)0.0394 (13)0.0346 (13)0.0120 (10)0.0089 (10)0.0083 (10)
C120.0504 (16)0.0543 (15)0.0258 (12)0.0130 (12)0.0097 (11)0.0061 (11)
C130.0450 (15)0.0578 (16)0.0295 (13)0.0053 (12)−0.0079 (11)0.0136 (11)
C140.0294 (12)0.0409 (13)0.0337 (12)0.0083 (10)−0.0037 (9)0.0110 (10)
C150.0243 (10)0.0202 (10)0.0270 (10)0.0035 (8)0.0006 (8)0.0094 (8)
C160.0148 (9)0.0247 (10)0.0281 (11)0.0085 (8)−0.0033 (8)0.0105 (8)
C170.0380 (14)0.0637 (17)0.0381 (14)0.0000 (12)0.0020 (11)0.0162 (12)
C180.067 (2)0.0632 (19)0.0450 (16)0.0023 (15)0.0195 (14)0.0077 (14)

Geometric parameters (Å, °)

Li1—O1i1.901 (4)O10—H10A0.84 (2)
Li1—O91.910 (4)O10—H10B0.840 (10)
Li1—O81.959 (4)C1—C21.510 (3)
Li1—O31.993 (4)C2—C31.385 (3)
Li2—O31.967 (4)C2—C71.398 (3)
Li2—O101.970 (4)C3—C41.376 (3)
Li2—O2i1.986 (4)C3—H30.9300
Li2—O4ii1.998 (4)C4—C51.379 (3)
Li3—O6iii1.964 (4)C4—H40.9300
Li3—O51.965 (4)C5—C61.373 (3)
Li3—O7iv1.970 (4)C5—H50.9300
Li3—O42.002 (3)C6—C71.394 (3)
Li4—O2iv1.940 (4)C6—H60.9300
Li4—O51.961 (4)C7—C81.497 (3)
Li4—O71.995 (4)C9—C101.498 (3)
Li4—O8iv2.009 (4)C10—C111.386 (3)
O1—C11.251 (2)C10—C151.400 (3)
O1—Li1i1.901 (4)C11—C121.373 (3)
O2—C11.257 (2)C11—H110.9300
O2—Li4iv1.940 (4)C12—C131.379 (4)
O2—Li2i1.986 (4)C12—H120.9300
O3—C81.258 (2)C13—C141.377 (3)
O4—C81.261 (2)C13—H130.9300
O4—Li2ii1.998 (4)C14—C151.384 (3)
O5—C91.261 (2)C14—H140.9300
O6—C91.250 (2)C15—C161.499 (3)
O6—Li3iii1.964 (4)C17—C181.493 (4)
O7—C161.255 (2)C17—H17A0.9700
O7—Li3iv1.970 (4)C17—H17B0.9700
O8—C161.258 (2)C18—H18A0.9600
O8—Li4iv2.009 (4)C18—H18B0.9600
O9—C171.413 (3)C18—H18C0.9600
O9—H90.841 (13)
O1i—Li1—O9105.47 (17)C4—C3—C2121.5 (2)
O1i—Li1—O8103.97 (17)C4—C3—H3119.3
O9—Li1—O8116.44 (18)C2—C3—H3119.3
O1i—Li1—O3106.04 (16)C3—C4—C5119.6 (2)
O9—Li1—O3112.98 (18)C3—C4—H4120.2
O8—Li1—O3110.81 (17)C5—C4—H4120.2
O3—Li2—O10101.37 (17)C6—C5—C4119.9 (2)
O3—Li2—O2i112.47 (17)C6—C5—H5120.0
O10—Li2—O2i110.56 (17)C4—C5—H5120.0
O3—Li2—O4ii114.83 (17)C5—C6—C7121.2 (2)
O10—Li2—O4ii105.75 (17)C5—C6—H6119.4
O2i—Li2—O4ii111.15 (18)C7—C6—H6119.4
O6iii—Li3—O5115.79 (17)C6—C7—C2118.77 (19)
O6iii—Li3—O7iv100.67 (16)C6—C7—C8119.09 (18)
O5—Li3—O7iv97.71 (16)C2—C7—C8122.15 (17)
O6iii—Li3—O4116.55 (17)O3—C8—O4123.65 (18)
O5—Li3—O4115.86 (17)O3—C8—C7118.68 (17)
O7iv—Li3—O4106.30 (16)O4—C8—C7117.65 (17)
O2iv—Li4—O5104.30 (17)O6—C9—O5123.40 (18)
O2iv—Li4—O7127.86 (19)O6—C9—C10118.31 (17)
O5—Li4—O796.90 (15)O5—C9—C10118.29 (17)
O2iv—Li4—O8iv107.63 (16)O6—C9—Li3iii43.92 (12)
O5—Li4—O8iv123.76 (18)C11—C10—C15118.73 (19)
O7—Li4—O8iv98.37 (15)C11—C10—C9119.75 (19)
C1—O1—Li1i136.25 (17)C15—C10—C9121.52 (17)
C1—O2—Li4iv129.06 (16)C12—C11—C10121.5 (2)
C1—O2—Li2i123.07 (16)C12—C11—H11119.2
Li4iv—O2—Li2i107.38 (16)C10—C11—H11119.2
C8—O3—Li2142.29 (16)C11—C12—C13119.5 (2)
C8—O3—Li1112.98 (15)C11—C12—H12120.3
Li2—O3—Li1100.59 (15)C13—C12—H12120.3
C8—O4—Li2ii119.14 (16)C14—C13—C12120.1 (2)
C8—O4—Li3116.27 (15)C14—C13—H13120.0
Li2ii—O4—Li3124.59 (15)C12—C13—H13120.0
C9—O5—Li4129.30 (16)C13—C14—C15120.8 (2)
C9—O5—Li3130.62 (16)C13—C14—H14119.6
Li4—O5—Li399.23 (15)C15—C14—H14119.6
C9—O6—Li3iii109.88 (16)C14—C15—C10119.38 (19)
C16—O7—Li3iv128.87 (15)C14—C15—C16117.46 (18)
C16—O7—Li4106.10 (15)C10—C15—C16123.16 (17)
Li3iv—O7—Li4121.08 (15)O7—C16—O8123.81 (18)
C16—O8—Li1139.52 (17)O7—C16—C15116.96 (17)
C16—O8—Li4iv106.87 (16)O8—C16—C15119.11 (17)
Li1—O8—Li4iv110.21 (15)O9—C17—C18113.4 (2)
C17—O9—Li1122.55 (17)O9—C17—H17A108.9
C17—O9—H9110.9 (17)C18—C17—H17A108.9
Li1—O9—H9125.6 (17)O9—C17—H17B108.9
Li2—O10—H10A105.3 (19)C18—C17—H17B108.9
Li2—O10—H10B121.2 (18)H17A—C17—H17B107.7
H10A—O10—H10B109 (3)C17—C18—H18A109.5
O1—C1—O2125.25 (18)C17—C18—H18B109.5
O1—C1—C2116.45 (17)H18A—C18—H18B109.5
O2—C1—C2118.11 (16)C17—C18—H18C109.5
C3—C2—C7119.07 (19)H18A—C18—H18C109.5
C3—C2—C1116.90 (18)H18B—C18—H18C109.5
C7—C2—C1124.02 (17)
O10—Li2—O3—C848.3 (3)C7—C2—C3—C40.8 (3)
O2i—Li2—O3—C8166.4 (2)C1—C2—C3—C4−177.7 (2)
O4ii—Li2—O3—C8−65.1 (3)C2—C3—C4—C5−0.6 (4)
O10—Li2—O3—Li1−158.66 (16)C3—C4—C5—C60.5 (4)
O2i—Li2—O3—Li1−40.6 (2)C4—C5—C6—C7−0.7 (3)
O4ii—Li2—O3—Li187.9 (2)C5—C6—C7—C20.9 (3)
O1i—Li1—O3—C8−159.63 (16)C5—C6—C7—C8−179.59 (19)
O9—Li1—O3—C885.3 (2)C3—C2—C7—C6−1.0 (3)
O8—Li1—O3—C8−47.4 (2)C1—C2—C7—C6177.47 (18)
O1i—Li1—O3—Li237.91 (19)C3—C2—C7—C8179.55 (18)
O9—Li1—O3—Li2−77.1 (2)C1—C2—C7—C8−2.0 (3)
O8—Li1—O3—Li2150.12 (17)Li2—O3—C8—O4105.0 (3)
O6iii—Li3—O4—C8105.3 (2)Li1—O3—C8—O4−46.0 (2)
O5—Li3—O4—C8−113.2 (2)Li2—O3—C8—C7−76.6 (3)
O7iv—Li3—O4—C8−5.9 (2)Li1—O3—C8—C7132.36 (18)
C9iii—Li3—O4—C8128.77 (16)Li2ii—O4—C8—O3−59.5 (3)
O6iii—Li3—O4—Li2ii−74.8 (2)Li3—O4—C8—O3120.4 (2)
O5—Li3—O4—Li2ii66.7 (2)Li2ii—O4—C8—C7122.07 (19)
O7iv—Li3—O4—Li2ii173.99 (16)Li3—O4—C8—C7−58.0 (2)
C9iii—Li3—O4—Li2ii−51.4 (2)C6—C7—C8—O3156.66 (18)
Li4iv—Li3—O4—Li2ii153.92 (16)C2—C7—C8—O3−23.8 (3)
O2iv—Li4—O5—C9−58.5 (2)C6—C7—C8—O4−24.8 (3)
O7—Li4—O5—C973.5 (2)C2—C7—C8—O4154.65 (18)
O8iv—Li4—O5—C9178.40 (18)Li3iii—O6—C9—O5−23.6 (3)
C16iv—Li4—O5—C9161.14 (16)Li3iii—O6—C9—C10155.94 (17)
O2iv—Li4—O5—Li3131.37 (17)Li4—O5—C9—O6137.2 (2)
O7—Li4—O5—Li3−96.65 (16)Li3—O5—C9—O6−55.7 (3)
O8iv—Li4—O5—Li38.3 (2)Li4—O5—C9—C10−42.3 (3)
C16iv—Li4—O5—Li3−9.01 (16)Li3—O5—C9—C10124.8 (2)
O6iii—Li3—O5—C9111.4 (2)Li4—O5—C9—Li3iii120.91 (19)
O7iv—Li3—O5—C9−142.81 (18)Li3—O5—C9—Li3iii−71.9 (2)
O4—Li3—O5—C9−30.4 (3)O6—C9—C10—C11−20.6 (3)
C9iii—Li3—O5—C984.1 (2)O5—C9—C10—C11158.97 (19)
O6iii—Li3—O5—Li4−78.7 (2)Li3iii—C9—C10—C1119.7 (4)
O7iv—Li3—O5—Li427.15 (17)O6—C9—C10—C15159.43 (18)
O4—Li3—O5—Li4139.50 (18)O5—C9—C10—C15−21.0 (3)
C9iii—Li3—O5—Li4−105.99 (16)Li3iii—C9—C10—C15−160.3 (3)
Li3iii—Li3—O5—Li4−125.95 (13)C15—C10—C11—C12−0.6 (3)
Li4iv—Li3—O5—Li455.88 (16)C9—C10—C11—C12179.4 (2)
O2iv—Li4—O7—C16112.4 (2)C10—C11—C12—C13−0.1 (4)
O5—Li4—O7—C16−1.76 (19)C11—C12—C13—C140.2 (4)
O8iv—Li4—O7—C16−127.46 (16)C12—C13—C14—C150.6 (4)
C16iv—Li4—O7—C16−103.37 (14)C13—C14—C15—C10−1.3 (3)
O2iv—Li4—O7—Li3iv−88.1 (3)C13—C14—C15—C16178.5 (2)
O5—Li4—O7—Li3iv157.75 (15)C11—C10—C15—C141.3 (3)
O8iv—Li4—O7—Li3iv32.0 (2)C9—C10—C15—C14−178.69 (18)
C16iv—Li4—O7—Li3iv56.14 (18)C11—C10—C15—C16−178.52 (18)
O1i—Li1—O8—C16−113.1 (2)C9—C10—C15—C161.5 (3)
O9—Li1—O8—C162.4 (3)Li3iv—O7—C16—O8−51.7 (3)
O3—Li1—O8—C16133.4 (2)Li4—O7—C16—O8105.6 (2)
O1i—Li1—O8—Li4iv91.69 (18)Li3iv—O7—C16—C15124.2 (2)
O9—Li1—O8—Li4iv−152.80 (18)Li4—O7—C16—C15−78.46 (19)
O3—Li1—O8—Li4iv−21.8 (2)Li3iv—O7—C16—Li4iv−59.9 (2)
O1i—Li1—O9—C1736.1 (3)Li4—O7—C16—Li4iv97.41 (14)
O8—Li1—O9—C17−78.6 (3)Li1—O8—C16—O7−166.9 (2)
O3—Li1—O9—C17151.5 (2)Li4iv—O8—C16—O7−11.2 (2)
Li1i—O1—C1—O2−3.7 (4)Li1—O8—C16—C1517.3 (3)
Li1i—O1—C1—C2171.2 (2)Li4iv—O8—C16—C15172.99 (17)
Li4iv—O2—C1—O1−168.20 (19)Li1—O8—C16—Li4iv−155.7 (3)
Li2i—O2—C1—O12.7 (3)C14—C15—C16—O7−87.3 (2)
Li4iv—O2—C1—C217.0 (3)C10—C15—C16—O792.6 (2)
Li2i—O2—C1—C2−172.08 (17)C14—C15—C16—O888.8 (2)
O1—C1—C2—C3−69.0 (2)C10—C15—C16—O8−91.3 (2)
O2—C1—C2—C3106.2 (2)C14—C15—C16—Li4iv107.8 (5)
O1—C1—C2—C7112.5 (2)C10—C15—C16—Li4iv−72.3 (6)
O2—C1—C2—C7−72.2 (2)Li1—O9—C17—C18166.4 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) −x, −y+2, −z+1; (iv) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O9—H9···O10ii0.84 (1)1.95 (2)2.767 (2)165 (2)
O10—H10A···O10.84 (2)1.97 (2)2.764 (2)156 (2)
O10—H10B···O6ii0.84 (1)1.98 (1)2.797 (2)163 (3)
C17—H17A···Cg20.972.863.584 (3)132
C18—H18C···Cg1ii0.962.703.572 (3)152

Symmetry codes: (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2860).

References

  • Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SAINT-Plus-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chae, H. K., Siberio-Perez, D. Y., Kim, J., Go, Y., Eddaoudi, M., Matzger, A. J., O’Keeffe, M. & Yaghi, O. M. (2004). Nature (London), 427, 523–527. [PubMed]
  • Desiraju, G. R. (1991). Acc. Chem. Res.24, 290–296.
  • García-Zarracino, R. & Höpfl, H. (2004). Angew. Chem. Int. Ed.43, 1507–1511. [PubMed]
  • García-Zarracino, R., Ramos-Quiñones, J. & Höpfl, H. (2003). Inorg. Chem.42, 3835–3845. [PubMed]
  • García-Zarracino, R., Rangel-Marrón, M., Tlahuext, H. & Höpfl, H. (2008). Acta Cryst. E64, m1626. [PMC free article] [PubMed]
  • Hunter, C. A. (1994). Chem. Soc. Rev. pp. 101–109.
  • Łyszczek, R., Mazur, L. & Rzączyńsk, Z. (2008). Inorg. Chem. Commun.11, 1091–1093.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography