PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m292.
Published online 2009 February 21. doi:  10.1107/S1600536809005479
PMCID: PMC2968521

trans,trans,trans-Diaquabis(nicotinamide-κN)bis­(2-nitro­benzoato-κO)cadmium(II) dihydrate

Abstract

The cadmium atom in the title compound, [Cd(C7H4NO4)2(C6H6N2O)2(H2O)2]·2H2O, lies on a center of inversion in an all-trans octa­hedral environment. In the crystal, the complex inter­acts with the uncoordinated water mol­ecules through O—H(...)O and N—H(...)O hydrogen bonds, forming a layered network.

Related literature

There are several examples of diaquadi(aryl­carboxyl­ato)di(nicotinamide)metal(II) compounds. For recent examples, see: Hökelek & Necefoğlu (2007a [triangle],b [triangle]); Hökelek et al. (2007 [triangle]); Koksharova et al. (2006 [triangle]); Şahin et al. (2007a [triangle],b [triangle]); Stachova et al. (2006 [triangle]); Çaylak et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m292-scheme1.jpg

Experimental

Crystal data

  • [Cd(C7H4NO4)2(C6H6N2O)2(H2O)2]·2H2O
  • M r = 760.94
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m292-efi1.jpg
  • a = 7.9365 (8) Å
  • b = 19.589 (2) Å
  • c = 10.059 (1) Å
  • β = 103.178 (2)°
  • V = 1522.6 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.80 mm−1
  • T = 293 K
  • 0.50 × 0.18 × 0.18 mm

Data collection

  • Bruker SMART area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.619, T max = 0.866
  • 4427 measured reflections
  • 2651 independent reflections
  • 2396 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.093
  • S = 1.13
  • 2651 reflections
  • 246 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.42 e Å−3
  • Δρmin = −1.04 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005479/pv2136sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005479/pv2136Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Foundation of Jiangsu Provincial Key Program of Physical Chemistry in Yangzhou University and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

A water/methanol (1:1 v/v) solution (3 ml) of cadmium nitrate trihydrate (0.082 g, 0.3 mmol) was added to a water/methanol (1:1 v/v) solution (3 ml) of 2-nitrobenzoic acid (0.100 g, 0.6 mmol), sodium hydroxide (0.024 g, 0.6 mmol) and nicotinamide (0.073 g, 0.6 mmol). A white powder was obtained after several days; this was recrystallized from DMF/methanol (3:1 v/v) to give colorless crystals in 50% yield. CH&N elemental analysis. Calculated for C26H28CdN6O14: C 41.04 H 3.68 N 11.04%; found: C 40.08, H 3.87, N 10.93%.

Refinement

Carbon-bound H atoms were placed in calculated positions and were allowed to ride on the parent atoms. N and O-bound H atoms were located in a difference Fourier map, and were refined with distance restraints N–H = O–H = 0.85±0.01 Å; for the water molecules, an additional H···H 1.39±0.01 Å restraint was used. Their temperature factors were freely refined.

The measurements are 100% at the 2θ limit of 50 °.

Figures

Fig. 1.
Thermal ellipsoid plot of Cd(H2O)2(C7H4NO4)2(C6H6N2O)2.2H2O; displacement ellipsoids are drawn at the 50% probabability level, and H atoms as spheres of arbitrary radii.

Crystal data

[Cd(C7H4NO4)2(C6H6N2O)2(H2O)2]·2H2OF(000) = 772
Mr = 760.94Dx = 1.660 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3417 reflections
a = 7.9365 (8) Åθ = 2.1–25.1°
b = 19.589 (2) ŵ = 0.80 mm1
c = 10.059 (1) ÅT = 293 K
β = 103.178 (2)°Rod, colorless
V = 1522.6 (3) Å30.50 × 0.18 × 0.18 mm
Z = 2

Data collection

Bruker SMART area-detector diffractometer2651 independent reflections
Radiation source: medium-focus sealed tube2396 reflections with I > 2σ(I)
graphiteRint = 0.016
[var phi] and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→3
Tmin = 0.619, Tmax = 0.866k = −20→23
4427 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.13w = 1/[σ2(Fo2) + (0.0433P)2 + 2.3534P] where P = (Fo2 + 2Fc2)/3
2651 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.42 e Å3
9 restraintsΔρmin = −1.04 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.50000.50000.50000.02349 (13)
O10.6570 (3)0.40982 (12)0.4385 (2)0.0312 (5)
O20.4256 (3)0.36571 (14)0.2970 (3)0.0428 (7)
O30.3595 (4)0.23243 (19)0.1217 (4)0.0693 (10)
O40.4552 (5)0.2124 (2)0.3355 (4)0.0835 (12)
O50.0789 (4)0.48477 (17)0.8538 (3)0.0505 (8)
O1W0.7685 (3)0.55083 (13)0.5819 (3)0.0362 (6)
H110.842 (5)0.561 (2)0.536 (4)0.055 (14)*
H120.737 (6)0.5868 (14)0.616 (5)0.082 (19)*
O2W0.9923 (3)0.57871 (14)0.4149 (3)0.0375 (6)
H210.987 (5)0.556 (2)0.342 (3)0.079 (18)*
H221.097 (2)0.581 (2)0.460 (3)0.050 (13)*
N10.4713 (4)0.23414 (16)0.2260 (4)0.0438 (8)
N20.5129 (3)0.44979 (15)0.7119 (3)0.0291 (6)
N30.1940 (4)0.44256 (19)1.0627 (3)0.0405 (8)
H310.274 (4)0.424 (2)1.122 (3)0.055 (13)*
H320.114 (4)0.457 (2)1.098 (3)0.049 (12)*
C10.6994 (4)0.32348 (16)0.2832 (3)0.0237 (6)
C20.6421 (4)0.26190 (17)0.2198 (3)0.0282 (7)
C30.7386 (5)0.22316 (19)0.1503 (4)0.0386 (9)
H30.69420.18290.10700.047 (12)*
C40.9033 (5)0.2454 (2)0.1459 (4)0.0407 (9)
H40.97140.21960.10080.047 (12)*
C50.9655 (5)0.3057 (2)0.2087 (4)0.0430 (9)
H51.07610.32050.20630.057 (13)*
C60.8643 (4)0.34455 (19)0.2755 (4)0.0337 (8)
H60.90750.38550.31610.046 (12)*
C70.5842 (4)0.36885 (16)0.3458 (3)0.0262 (7)
C80.3792 (4)0.46351 (17)0.7674 (3)0.0256 (7)
H80.29750.49510.72380.044 (12)*
C90.3553 (4)0.43356 (17)0.8857 (3)0.0273 (7)
C100.4767 (5)0.3864 (2)0.9499 (4)0.0399 (9)
H100.46450.36481.02950.044 (11)*
C110.6165 (5)0.3721 (2)0.8941 (4)0.0461 (10)
H11A0.70040.34100.93620.055 (13)*
C120.6301 (5)0.40434 (19)0.7751 (4)0.0352 (8)
H12A0.72390.39420.73750.052 (12)*
C130.1972 (4)0.45472 (18)0.9337 (3)0.0312 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.02157 (19)0.0277 (2)0.0224 (2)−0.00033 (12)0.00743 (13)0.00046 (12)
O10.0292 (12)0.0324 (13)0.0303 (12)0.0020 (10)0.0034 (10)−0.0075 (10)
O20.0268 (13)0.0550 (17)0.0443 (15)0.0049 (12)0.0033 (11)−0.0207 (13)
O30.0398 (17)0.078 (2)0.085 (3)−0.0141 (16)0.0042 (17)−0.027 (2)
O40.087 (3)0.098 (3)0.078 (3)−0.041 (2)0.044 (2)0.003 (2)
O50.0388 (16)0.084 (2)0.0318 (15)0.0297 (15)0.0135 (12)0.0122 (14)
O1W0.0273 (13)0.0406 (14)0.0416 (15)−0.0066 (11)0.0094 (11)−0.0085 (12)
O2W0.0276 (13)0.0452 (15)0.0390 (15)0.0019 (11)0.0061 (11)−0.0039 (12)
N10.0417 (19)0.0363 (18)0.057 (2)−0.0114 (14)0.0190 (17)−0.0155 (16)
N20.0251 (14)0.0348 (15)0.0274 (15)0.0037 (12)0.0059 (11)0.0027 (12)
N30.0366 (17)0.066 (2)0.0223 (15)0.0158 (16)0.0128 (13)0.0093 (15)
C10.0281 (16)0.0240 (16)0.0173 (14)0.0011 (13)0.0015 (12)−0.0017 (12)
C20.0282 (17)0.0258 (17)0.0313 (17)−0.0024 (13)0.0083 (14)−0.0016 (14)
C30.051 (2)0.0263 (18)0.041 (2)−0.0017 (16)0.0154 (17)−0.0088 (16)
C40.042 (2)0.040 (2)0.045 (2)0.0102 (17)0.0185 (17)−0.0024 (17)
C50.0305 (19)0.047 (2)0.056 (3)−0.0013 (17)0.0203 (18)−0.0033 (19)
C60.0303 (18)0.0349 (19)0.0359 (19)−0.0044 (15)0.0075 (15)−0.0083 (15)
C70.0254 (16)0.0243 (16)0.0297 (17)0.0019 (13)0.0078 (13)0.0013 (13)
C80.0246 (16)0.0309 (18)0.0201 (15)0.0033 (13)0.0025 (12)0.0029 (13)
C90.0282 (17)0.0336 (18)0.0199 (15)0.0028 (14)0.0051 (13)−0.0012 (13)
C100.042 (2)0.053 (2)0.0267 (18)0.0173 (18)0.0117 (15)0.0150 (17)
C110.041 (2)0.062 (3)0.035 (2)0.027 (2)0.0095 (17)0.0190 (19)
C120.0303 (18)0.046 (2)0.0317 (19)0.0088 (16)0.0117 (15)0.0022 (16)
C130.0304 (18)0.0375 (19)0.0274 (17)0.0051 (15)0.0098 (14)0.0027 (14)

Geometric parameters (Å, °)

Cd1—O1i2.325 (2)C1—C21.391 (4)
Cd1—O12.325 (2)C1—C61.391 (5)
Cd1—O1Wi2.326 (2)C1—C71.512 (4)
Cd1—O1W2.326 (2)C2—C31.377 (5)
Cd1—N22.329 (3)C3—C41.388 (5)
Cd1—N2i2.329 (3)C3—H30.9300
O1—C71.266 (4)C4—C51.378 (6)
O2—C71.244 (4)C4—H40.9300
O3—N11.211 (5)C5—C61.386 (5)
O4—N11.214 (5)C5—H50.9300
O5—C131.237 (4)C6—H60.9300
O1W—H110.85 (4)C8—C91.378 (5)
O1W—H120.85 (4)C8—H80.9300
O2W—H210.85 (3)C9—C101.383 (5)
O2W—H220.85 (3)C9—C131.502 (5)
N1—C21.476 (4)C10—C111.382 (5)
N2—C81.334 (4)C10—H100.9300
N2—C121.339 (4)C11—C121.379 (5)
N3—C131.325 (4)C11—H11A0.9300
N3—H310.84 (3)C12—H12A0.9300
N3—H320.85 (3)
O1i—Cd1—O1180.000 (1)C1—C2—N1120.5 (3)
O1i—Cd1—O1Wi85.20 (9)C2—C3—C4118.7 (3)
O1—Cd1—O1Wi94.80 (9)C2—C3—H3120.7
O1i—Cd1—O1W94.80 (9)C4—C3—H3120.7
O1—Cd1—O1W85.20 (9)C5—C4—C3119.8 (3)
O1Wi—Cd1—O1W180.00 (12)C5—C4—H4120.1
O1i—Cd1—N289.52 (9)C3—C4—H4120.1
O1—Cd1—N290.48 (9)C4—C5—C6120.4 (3)
O1Wi—Cd1—N289.36 (10)C4—C5—H5119.8
O1W—Cd1—N290.64 (10)C6—C5—H5119.8
O1i—Cd1—N2i90.48 (9)C5—C6—C1121.4 (3)
O1—Cd1—N2i89.52 (9)C5—C6—H6119.3
O1Wi—Cd1—N2i90.64 (10)C1—C6—H6119.3
O1W—Cd1—N2i89.36 (10)O2—C7—O1125.0 (3)
N2—Cd1—N2i180.0O2—C7—C1117.4 (3)
C7—O1—Cd1119.7 (2)O1—C7—C1117.5 (3)
Cd1—O1W—H11126 (3)N2—C8—C9123.7 (3)
Cd1—O1W—H12100 (3)N2—C8—H8118.2
H11—O1W—H12109 (4)C9—C8—H8118.2
H21—O2W—H22109.4 (17)C8—C9—C10118.0 (3)
O3—N1—O4124.7 (4)C8—C9—C13116.7 (3)
O3—N1—C2118.2 (4)C10—C9—C13125.3 (3)
O4—N1—C2117.1 (4)C11—C10—C9118.9 (3)
C8—N2—C12117.9 (3)C11—C10—H10120.5
C8—N2—Cd1115.1 (2)C9—C10—H10120.5
C12—N2—Cd1126.6 (2)C12—C11—C10119.3 (3)
C13—N3—H31126 (3)C12—C11—H11A120.4
C13—N3—H32122 (2)C10—C11—H11A120.4
H31—N3—H32111.4 (18)N2—C12—C11122.2 (3)
C2—C1—C6116.4 (3)N2—C12—H12A118.9
C2—C1—C7122.4 (3)C11—C12—H12A118.9
C6—C1—C7121.0 (3)O5—C13—N3122.8 (3)
C3—C2—C1123.3 (3)O5—C13—C9119.2 (3)
C3—C2—N1116.2 (3)N3—C13—C9118.0 (3)
O1Wi—Cd1—O1—C722.2 (2)C4—C5—C6—C11.0 (6)
O1W—Cd1—O1—C7−157.8 (2)C2—C1—C6—C5−0.3 (5)
N2—Cd1—O1—C7111.6 (2)C7—C1—C6—C5−174.8 (3)
N2i—Cd1—O1—C7−68.4 (2)Cd1—O1—C7—O2−11.8 (5)
O1i—Cd1—N2—C829.7 (2)Cd1—O1—C7—C1163.9 (2)
O1—Cd1—N2—C8−150.3 (2)C2—C1—C7—O2−27.5 (5)
O1Wi—Cd1—N2—C8−55.5 (2)C6—C1—C7—O2146.7 (3)
O1W—Cd1—N2—C8124.5 (2)C2—C1—C7—O1156.4 (3)
O1i—Cd1—N2—C12−157.2 (3)C6—C1—C7—O1−29.4 (4)
O1—Cd1—N2—C1222.8 (3)C12—N2—C8—C90.0 (5)
O1Wi—Cd1—N2—C12117.6 (3)Cd1—N2—C8—C9173.7 (3)
O1W—Cd1—N2—C12−62.4 (3)N2—C8—C9—C10−0.3 (5)
C6—C1—C2—C3−1.2 (5)N2—C8—C9—C13−179.8 (3)
C7—C1—C2—C3173.2 (3)C8—C9—C10—C110.7 (6)
C6—C1—C2—N1178.0 (3)C13—C9—C10—C11−179.9 (4)
C7—C1—C2—N1−7.5 (5)C9—C10—C11—C12−0.8 (7)
O3—N1—C2—C3−69.1 (5)C8—N2—C12—C11−0.1 (6)
O4—N1—C2—C3108.4 (4)Cd1—N2—C12—C11−173.0 (3)
O3—N1—C2—C1111.6 (4)C10—C11—C12—N20.6 (7)
O4—N1—C2—C1−70.9 (5)C8—C9—C13—O515.8 (5)
C1—C2—C3—C41.9 (6)C10—C9—C13—O5−163.7 (4)
N1—C2—C3—C4−177.4 (3)C8—C9—C13—N3−161.5 (3)
C2—C3—C4—C5−1.1 (6)C10—C9—C13—N319.0 (6)
C3—C4—C5—C6−0.3 (6)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1w—H11···O2w0.85 (4)1.92 (4)2.764 (4)174 (4)
O1w—H12···O2i0.85 (4)1.95 (5)2.718 (4)150 (4)
O2w—H21···O5i0.85 (3)2.08 (3)2.910 (4)166 (4)
O2w—H22···O1ii0.85 (3)2.00 (1)2.846 (3)177 (5)
N3—H31···O2iii0.85 (3)2.22 (2)3.038 (4)165 (4)
N3—H32···O5iv0.85 (3)2.05 (3)2.873 (4)164 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x, y, z+1; (iv) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2136).

References

  • Barbour, L. J. (2001). J. Supramol. Chem., 1, 189–191.
  • Bruker (2000). SAINT and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Çaylak, N., Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m1341–m1343.
  • Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m1873–m1874.
  • Hökelek, T. & Necefoğlu, H. (2007a). Acta Cryst. E63, m1078–m1080.
  • Hökelek, T. & Necefoğlu, H. (2007b). Acta Cryst. E63, m1279–m1281.
  • Koksharova, T. V., Sadikov, G. G., Antsyshkina, A. S., Gritsenko, I. S., Sergienko, V. S. & Egorova, O. A. (2006). Russ. J. Inorg. Chem.51, 895–900.
  • Şahin, O., Büyükgüngör, O., Köse, D. A. & Necefoglu, H. (2007a). Acta Cryst. C63, m510–m512. [PubMed]
  • Şahin, O., Büyükgüngör, O., Köse, D. A., Ozturkkan, E. F. & Necefoglu, H. (2007b). Acta Cryst. C63, m243–m245. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stachova, P., Melnik, M., Korobik, M., Mrozinski, M., Koman, M., Glowiak, T. & Valigura, D. (2006). Inorg. Chim. Acta, 360, 1517–1522.
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography