PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o554–o555.
Published online 2009 February 21. doi:  10.1107/S1600536809005066
PMCID: PMC2968512

3-(2-Acetamido­phen­yl)sydnone

Abstract

Sydnones are unusual mesoionic compounds containing a five-membered heterocyclic ring. Generally for stability, substitution at the N-3 position by an aromatic fragment is necessary. In the title compound, C10H9N3O3, the aromatic substitutent is 2-acetamido­phenyl. The two planar ring fragments are twisted relative to one another, with a inter­planar angle of 63.13 (5)°. The mol­ecules are packed into the unit cell via π–π inter­actions between the phenyl rings [inter­planar separation = 3.4182 (4) Å] and between the sydnone rings [inter­planar separation = 3.2095 (4) Å]. N—H(...)O and C—H(...)O hydrogen bonding is also found inter­nally and externally to the mol­ecule.

Related literature

For more information on the sydnone family of compounds, see: Ohta & Kato (1969 [triangle]). For the synthesis and structural information, see: Grossie et al. (1992 [triangle], 2001 [triangle], 2007 [triangle]); Riddle et al. 2004a [triangle],b [triangle],c [triangle]; Hope & Thiessen (1968 [triangle]); Hodson & Turnbull (1985 [triangle]); Baker & Ollis (1957 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]). For related literature, see: Kier & Roche (1966 [triangle]); Matsunaga (1957 [triangle]); Ollis & Ramsden (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o554-scheme1.jpg

Experimental

Crystal data

  • C10H9N3O3
  • M r = 219.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o554-efi1.jpg
  • a = 7.7348 (4) Å
  • b = 13.7212 (7) Å
  • c = 9.6698 (5) Å
  • β = 106.083 (1)°
  • V = 986.10 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 173 K
  • 0.45 × 0.40 × 0.26 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.895, T max = 0.970
  • 8741 measured reflections
  • 3053 independent reflections
  • 2711 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.108
  • S = 1.05
  • 3053 reflections
  • 150 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2008 [triangle]) and OSCAIL X, (McArdle, 2008 [triangle]); software used to prepare material for publication: enCIFer (Allen et al., 2004 [triangle]), publCIF (Westrip, 2009 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005066/rk2130sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005066/rk2130Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the diffractometer time granted by A. Hunter, Youngstown State University.

supplementary crystallographic information

Comment

Sydnones are the most widely studied members of the general class of mesoionic compounds (Ohta & Kato, 1969). They are the products of dehydration of N–nitroso–α–aminoacids (Hope & Thiessen, 1968), and they undergo facile electrophilic aromatic subtitution on the sydnone ring. The selectivity on the sydnone ring (and not the aryl ring) can be attributed to the activated nature of the sydnone ring (Matsunaga, 1957) and its deactivating effect upon the attached aryl ring (the N3 position bears a considerable fractional positive charge (Kier & Roche, 1966)).

The 3–(2–acetamidophenyl)sydnone was synthesized to investigate its bromination and to probe the parameters controlling the site of electrophilic attack, both from mechanistic and synthetic standpoints. The sydnone ring is found to be planar. The ring bond distances O–N, N–N, N–C and C–C are similar to those of related compounds. However, the C—O bond distance of 1.4158 (12)Å, is longer than that of the C—O bond in a furane ring. As mentioned in previous paper (Hodson & Turnbull, 1985), the exocyclic C═O distance (1.2181 (12)Å) does not support the formulation of Baker & Ollis (1957), which involves the delocalization of a positive charge on the ring, and a negative charge on the exocyclic oxygen.

The molecules pack along the body diagonal within the unit cell, in symmetry related pairs with the phenyl rings lying parallel to each other, separated by a distance of 3.4182 (4)Å. The pairs of molecules are further paired through interaction of the sydnone rings in adjacent molecules, which are positioned parallel to each other at a distance of 3.2095 (4)Å. The molecules are connected laterally through hydrogen bonding between the sydnone and acetamide O atoms and phenyl, and amide H atoms. Hydrogen bond parameters are tabulated in Table 1.

As expected the sydnone ring was similar in metrical parameters to sydnone structures previously determined, in this laboratory (Grossie et al., 1992, 2001, 2007; Riddle et al. 2004a,b,c) and as found in the Cambridge Structural Database vers. 5.30 (Allen, 2002).

Experimental

3–(2–Aminophenyl)sydnone (0.5 g, 2.82 mmol) was dissolved in acetic anhydride (10 ml) and stirred for 20 h. Evaporation on standing overnight gave a light yellow oil which was crystallized from methylene chloride/petroleum ether to give 3–(2–acetamidophenyl)sydnone (0.42 g, 68%), mp 349–351 K; IR–spectra: 3310, 3290 (N—H str), 3130 (sydnone C—H str), 1740 (sydnone C═O str) cm-1. The 1H NMR (CDCl3): δ 2.0 (s, 3H), 6.83 (s, 1H), 7.65 (m, 4H), 9.65 (s, 1H). Anal. Calcd. for C10H9N3O3: C, 54.79; H, 4.11; N, 19.18. Found; C, 54.90; H, 4.17; N, 18.89.

Refinement

The amide H atom was located in a different Fourier map and refined with an isotropic displacement parameter. The positional parameters were allow to refine freely. The methyl and benzene H atoms were included in geometrically calculated positions, with C—H distances of 0.98Å and 0.96Å, respectively, and Uiso(H) = 1.3Ueq(C).

Figures

Fig. 1.
Molecular structure of title compound with the atom numbering scheme. The displacement ellipsoids are drawn at 50% probability level. The H atoms are presented as a small spheres of arbitrary radius.

Crystal data

C10H9N3O3F(000) = 456
Mr = 219.20Dx = 1.477 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4272 reflections
a = 7.7348 (4) Åθ = 2.7–31.7°
b = 13.7212 (7) ŵ = 0.11 mm1
c = 9.6698 (5) ÅT = 173 K
β = 106.083 (1)°Block, white
V = 986.10 (9) Å30.45 × 0.40 × 0.26 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer3053 independent reflections
Radiation source: Fine–focus sealed tube2711 reflections with I > 2σ(I)
GraphiteRint = 0.017
ω scansθmax = 32.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −11→11
Tmin = 0.895, Tmax = 0.970k = −19→14
8741 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: Geom
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.058P)2 + 0.315P] where P = (Fo2 + 2Fc2)/3
3053 reflections(Δ/σ)max < 0.001
150 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. Least–Squares Planes. Sydnone Ring. Defining atoms: O1 0.004 (1)Å, N2 -0.003 (1)Å, N3 0.000 (1)Å, C4 0.003 (1)Å, C5 -0.004 (1)Å; other atoms: O5 0.002 (1)Å, C11 0.081 (1)Å. Phenyl Ring. Defining atoms: C11 0.009 (1)Å, C12 -0.004 (1)Å, C13 -0.003 (1)Å, C14 0.006 (1)Å, C15 -0.002 (1)Å, C16 -0.006 (1)Å; other atoms: O17A 0.710 (1)Å, N12 -0.120 (1)Å, C17 0.159 (1)Å, C18 -0.233 (1)Å.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on\ F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.84105 (9)0.07745 (5)0.51445 (7)0.01803 (16)
N30.82573 (10)0.08267 (6)0.29241 (8)0.01461 (16)
N20.76980 (11)0.03010 (6)0.38528 (9)0.01838 (18)
C40.92672 (12)0.16064 (7)0.34726 (10)0.01603 (18)
H40.97910.20670.29590.021*
C50.94005 (12)0.16089 (7)0.49604 (10)0.01573 (18)
O51.01261 (10)0.21147 (6)0.59934 (8)0.01993 (16)
C110.78190 (12)0.04762 (7)0.14601 (9)0.01569 (18)
C120.67371 (12)0.10348 (7)0.03402 (10)0.01569 (18)
N120.59485 (11)0.19068 (6)0.06408 (8)0.01579 (16)
H120.579 (2)0.1987 (11)0.1492 (16)0.024 (3)*
C130.63770 (14)0.06464 (8)−0.10516 (10)0.0210 (2)
H130.56440.1005−0.18530.027*
C140.70713 (15)−0.02531 (8)−0.12794 (11)0.0231 (2)
H140.6820−0.0503−0.22420.030*
C150.81211 (14)−0.08014 (8)−0.01474 (11)0.0219 (2)
H150.8582−0.1425−0.03220.028*
C160.84924 (13)−0.04322 (7)0.12408 (11)0.01917 (19)
H160.9207−0.08000.20400.025*
C170.52287 (12)0.26254 (7)−0.03227 (10)0.01474 (17)
O17A0.53832 (10)0.26491 (6)−0.15559 (7)0.02026 (16)
C180.42424 (13)0.34120 (8)0.02328 (10)0.01933 (19)
H18A0.50420.39720.05440.025*
H18B0.38580.31620.10500.025*
H18C0.31840.3615−0.05340.025*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0216 (3)0.0193 (4)0.0135 (3)−0.0025 (3)0.0055 (2)0.0016 (2)
N30.0158 (3)0.0144 (4)0.0133 (3)0.0005 (3)0.0036 (3)0.0016 (3)
N20.0218 (4)0.0187 (4)0.0148 (3)−0.0033 (3)0.0053 (3)0.0015 (3)
C40.0183 (4)0.0157 (4)0.0143 (4)−0.0019 (3)0.0049 (3)0.0007 (3)
C50.0166 (4)0.0155 (4)0.0155 (4)0.0016 (3)0.0051 (3)0.0020 (3)
O50.0242 (3)0.0201 (4)0.0155 (3)−0.0006 (3)0.0055 (3)−0.0021 (3)
C110.0169 (4)0.0170 (4)0.0130 (4)−0.0004 (3)0.0038 (3)−0.0013 (3)
C120.0174 (4)0.0159 (4)0.0137 (4)0.0007 (3)0.0043 (3)−0.0008 (3)
N120.0201 (4)0.0167 (4)0.0108 (3)0.0029 (3)0.0047 (3)0.0003 (3)
C130.0250 (5)0.0219 (5)0.0144 (4)0.0030 (4)0.0027 (3)−0.0028 (3)
C140.0282 (5)0.0223 (5)0.0186 (4)0.0013 (4)0.0060 (4)−0.0062 (4)
C150.0243 (5)0.0175 (5)0.0244 (5)0.0015 (3)0.0074 (4)−0.0042 (4)
C160.0201 (4)0.0160 (5)0.0208 (4)0.0016 (3)0.0047 (3)0.0004 (3)
C170.0148 (4)0.0163 (4)0.0130 (4)−0.0016 (3)0.0037 (3)0.0000 (3)
O17A0.0294 (4)0.0199 (4)0.0130 (3)−0.0011 (3)0.0084 (3)0.0009 (3)
C180.0219 (4)0.0201 (5)0.0174 (4)0.0059 (3)0.0078 (3)0.0027 (3)

Geometric parameters (Å, °)

O1—N21.3801 (10)N12—H120.871 (15)
O1—C51.4158 (12)C13—C141.3878 (15)
N3—N21.3150 (11)C13—H130.9600
N3—C41.3440 (12)C14—C151.3897 (15)
N3—C111.4437 (12)C14—H140.9600
C4—C51.4136 (12)C15—C161.3883 (14)
C4—H40.9600C15—H150.9600
C5—O51.2181 (12)C16—H160.9600
C11—C161.3897 (14)C17—O17A1.2314 (11)
C11—C121.3994 (13)C17—C181.5041 (14)
C12—C131.4018 (13)C18—H18A0.9800
C12—N121.4093 (12)C18—H18B0.9800
N12—C171.3649 (12)C18—H18C0.9800
N2—O1—C5111.17 (7)C14—C13—H13119.7
N2—N3—C4115.61 (8)C12—C13—H13119.7
N2—N3—C11117.04 (8)C13—C14—C15121.59 (9)
C4—N3—C11127.23 (8)C13—C14—H14119.2
N3—N2—O1103.62 (7)C15—C14—H14119.2
N3—C4—C5105.91 (8)C16—C15—C14118.90 (9)
N3—C4—H4127.0C16—C15—H15120.6
C5—C4—H4127.0C14—C15—H15120.6
O5—C5—C4136.32 (9)C15—C16—C11119.27 (9)
O5—C5—O1120.00 (8)C15—C16—H16120.4
C4—C5—O1103.68 (8)C11—C16—H16120.4
C16—C11—C12122.84 (9)O17A—C17—N12123.33 (9)
C16—C11—N3116.89 (8)O17A—C17—C18121.46 (9)
C12—C11—N3120.26 (8)N12—C17—C18115.21 (8)
C11—C12—C13116.86 (9)C17—C18—H18A109.5
C11—C12—N12120.37 (8)C17—C18—H18B109.5
C13—C12—N12122.58 (8)H18A—C18—H18B109.5
C17—N12—C12126.20 (8)C17—C18—H18C109.5
C17—N12—H12114.7 (10)H18A—C18—H18C109.5
C12—N12—H12118.8 (10)H18B—C18—H18C109.5
C14—C13—C12120.52 (9)
C4—N3—N2—O1−0.25 (11)N3—C11—C12—C13179.79 (9)
C11—N3—N2—O1176.13 (7)C16—C11—C12—N12173.82 (9)
C5—O1—N2—N30.65 (10)N3—C11—C12—N12−5.04 (14)
N2—N3—C4—C5−0.24 (11)C11—C12—N12—C17163.84 (9)
C11—N3—C4—C5−176.19 (8)C13—C12—N12—C17−21.28 (15)
N3—C4—C5—O5179.52 (11)C11—C12—C13—C140.22 (15)
N3—C4—C5—O10.61 (10)N12—C12—C13—C14−174.83 (10)
N2—O1—C5—O5−179.93 (8)C12—C13—C14—C150.73 (17)
N2—O1—C5—C4−0.80 (10)C13—C14—C15—C16−0.59 (17)
N2—N3—C11—C16−60.99 (12)C14—C15—C16—C11−0.50 (16)
C4—N3—C11—C16114.91 (11)C12—C11—C16—C151.51 (15)
N2—N3—C11—C12117.94 (10)N3—C11—C16—C15−179.60 (9)
C4—N3—C11—C12−66.16 (13)C12—N12—C17—O17A−9.29 (15)
C16—C11—C12—C13−1.34 (15)C12—N12—C17—C18171.74 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N12—H12···O17Ai0.876 (15)2.056 (15)2.9272 (10)173.2 (14)
C4—H4···O5ii0.962.283.1860 (12)156
C13—H13···O17A0.962.292.8587 (14)117
C15—H15···O5iii0.962.413.3612 (14)173
C16—H16···O5iv0.962.573.4700 (13)157
C18—H18B···O17Ai0.982.543.3201 (12)136

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2130).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Baker, W. & Ollis, W. D. (1957). Q. Rev. Chem. Soc.11, 15–29.
  • Bruker (2003). SADABS, SMART and SAINT–Plus, Bruker AXS Inc., Madison, Wisconsin, USA.
  • Grossie, D. A., Sun, L. & Turnbull, K. (2007). Acta Cryst. E63, o2042–o2043.
  • Grossie, D. A. & Turnbull, K. (1992). Acta Cryst. C48, 377–379.
  • Grossie, D. A., Turnbull, K. & Krein, D. M. (2001). Acta Cryst. E57, o985–o987.
  • Hodson, S. J. & Turnbull, K. (1985). In Bromination of 3-(2-Aminophenyl)sydnone and Related Compounds Department of Chemistry, Wright State University, Dayton, Ohio, USA.
  • Hope, H. & Thiessen, W. E. (1968). In The Structures of 4,4′-Dichloro-3,3′-ethylenebissydnone and 3,3′-Ethylenebys-sydnone Department of Chemistry, University of California, USA.
  • Kier, L. B. & Roche, E. B. (1966). J. Pharm. Sci 55, 807–12.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Matsunaga, Y. (1957). Bull. Chem. Soc. Jpn, 30, 227–230.
  • McArdle, P. (2008). OSCAIL X National University of Ireland, Ireland.
  • Ohta, M. & Kato, H. (1969). Nonbenzenoid Aromatics, edited by J. P. Snyder, pp. 117–248. New York: Academic Press. .
  • Ollis, W. D. & Ramsden, C. A. (1976). Adv. Heterocycl. Chem 19, 1–122.
  • Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004a). Acta Cryst. E60, o977–o978.
  • Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004b). Acta Cryst. E60, o1568–o1570.
  • Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004c). Acta Cryst. E60, o258–o259.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography