PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o625.
Published online 2009 February 28. doi:  10.1107/S1600536809006011
PMCID: PMC2968502

(E)-N,N′-Bis(2,6-dimethyl­phen­yl)-N,N′-bis­(trichloro­silyl)ethyl­ene-1,2-diamine

Abstract

The asymmetric unit of the title compound, C18H20Cl6N2Si2, contains one half of the centrosymmetric mol­ecule. The two benzene rings are perpendicular to the plane of Si–N–C=C–N–Si fragment, making a dihedral angle of 89.9 (1)°. The crystal packing exhibits short inter­molecular Cl(...)Cl contacts of 3.3119 (17) Å.

Related literature

For the geometric parameters of related compounds, see: Haaf et al. (1998 [triangle], 2000 [triangle]); Baker et al. (2008 [triangle]); Jones et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o625-scheme1.jpg

Experimental

Crystal data

  • C18H20Cl6N2Si2
  • M r = 533.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o625-efi1.jpg
  • a = 8.1858 (3) Å
  • b = 8.4249 (3) Å
  • c = 10.6074 (4) Å
  • α = 74.583 (3)°
  • β = 79.999 (2)°
  • γ = 62.243 (2)°
  • V = 623.00 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.79 mm−1
  • T = 273 K
  • 0.14 × 0.12 × 0.08 mm

Data collection

  • Bruker APEX2 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.897, T max = 0.939
  • 6168 measured reflections
  • 2168 independent reflections
  • 1729 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.202
  • S = 1.11
  • 2168 reflections
  • 129 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006011/cv2522sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006011/cv2522Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Science Foundation of China (No. 20571033) and by the Program for New Century Excellent Talents in Universities (NCET-06-0483).

supplementary crystallographic information

Comment

The title compound, (I), was synthesized by the reaction of the excess silicon tetrachloride and the dilithium salt of the diimine [N(2,6-Me2C6H3)C(H)]2 in THF (Haaf et al., 1998). A high yielding preparation of the title compound was devised whereby two equivalents of SiCl4 were treated with dilithium salt in THF (Baker et al., 2008). The title compound and related compounds are of interest in silylene chemistry in relation to synthesis of the silylene dichloride precursor (Haaf et al., 2000; Baker et al., 2008).

The title molecule (Fig. 1) exists in an E configuration with respect to the C═C double bond (Table 1) and crystallizes in the triclinic space group P1.The planes of the two xylyl substituents at the nitrogen atoms are perpendicularly oriented to the plane of Si1/N1/C1/C1i/N1i/Si1i [symmery code: (i) -x, 2-y, -z] forming dihedral angles of 89.9 (1)°. The Si–Cl and Si–N bond lengths in (I) (Table 1) are slightly shorter than those in the related complex (C5H3N-6-Me-2-NSiMe3)SiCl3 [Si–Cl 2.058 (2)-2.107 (3) Å; Si–N 1.753 (5) Å) (Jones et al., 2002). The distance N1–C1[1.428 (4) Å] agrees well with that observed in the related E-ethenediamine complex (Baker et al., 2008). The C1–N1–C2 angle [118.7 (3) °] in (I) is comparable to that in [PhC(NtBu)2]SiCl [120.70 (11) °] (Haaf et al., 1998). The C1–N1–Si1 angle [120.1 (2) °] in (I) is larger than that in [Si[N(tBu)CH]2]2 [109.42 (14) °] (Haaf et al., 1998), because of E configuration.

The crystal packing exhibits short intermolecular Cl···Cl contacts (Table 1).

Experimental

All manipulations were carried out under an argon atmosphere using standard Schlenk techniques or a nitrogen-filled glovebox. Solvents (THF, toluene) were dried over sodium and freshly distilled prior to use.

Naphthalene (1.24 g,10 mmol) was dissolved in THF (15 ml) and lithium powder (71 mg, 10 mmol) added. The resultant suspension was stirred at room temperature for 4 h to give an green suspension. [N(2,6-Me2C6H3)C(H)]2 (1.17 g, 4.5 mmol) was added to the suspension after cooled to -78 oC. The resultant mixture was stirred at room temperature for 24 h to give a red solution. At -78 oC, silicon tetrachloride (10 ml, 88 mmol) was added to the solution. Warmed to room temperature and stirred for 24 h. Volatiles were removed in vacuo and the residue was extracted with toluene (20 ml). After filtration, the filtrate was placed at -30 oC to give yellow crystals (43%). Elemental analysis(%) calcd. for C18H20Cl6N2Si2: C, 40.54%; H, 3.78%; N, 5.25%; Found: C,40.61%; H, 3.83%; N, 5.17%.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H of 0.93-0.96 Å, and Uiso(H) = 1.2-1.5 Ueq (C).

Figures

Fig. 1.
The molecular structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. The unlabelled atoms are related with the labelled ones by symmetry operation (-x, -y + 2, -z). H atoms omitted for clarity.

Crystal data

C18H20Cl6N2Si2Z = 1
Mr = 533.24F(000) = 272
Triclinic, P1Dx = 1.421 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1858 (3) ÅCell parameters from 2127 reflections
b = 8.4249 (3) Åθ = 2.8–25.6°
c = 10.6074 (4) ŵ = 0.79 mm1
α = 74.583 (3)°T = 273 K
β = 79.999 (2)°Block, yellow
γ = 62.243 (2)°0.14 × 0.12 × 0.08 mm
V = 623.00 (4) Å3

Data collection

Bruker APEX2 CCD area-detector diffractometer2168 independent reflections
Radiation source: fine-focus sealed tube1729 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −9→9
Tmin = 0.897, Tmax = 0.939k = −10→9
6168 measured reflectionsl = −12→12

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059w = 1/[σ2(Fo2) + (0.133P)2 + 0.1233P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.202(Δ/σ)max = 0.088
S = 1.11Δρmax = 0.57 e Å3
2168 reflectionsΔρmin = −0.50 e Å3
129 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Si10.34542 (14)0.80312 (14)0.19720 (9)0.0424 (4)
Cl10.40381 (19)1.01460 (17)0.18495 (14)0.0736 (5)
Cl20.54249 (18)0.64298 (19)0.08286 (14)0.0791 (5)
Cl30.36689 (17)0.65899 (17)0.38326 (10)0.0675 (4)
N10.1308 (4)0.8729 (4)0.1525 (3)0.0394 (7)
C10.0820 (5)0.9686 (5)0.0214 (3)0.0424 (9)
H10.17290.9875−0.03750.051*
C2−0.0078 (5)0.8409 (5)0.2452 (3)0.0391 (8)
C3−0.0237 (6)0.6787 (5)0.2607 (4)0.0510 (10)
C4−0.1436 (6)0.6423 (6)0.3580 (5)0.0630 (12)
H4−0.15350.53350.37060.076*
C5−0.2502 (7)0.7654 (8)0.4378 (5)0.0669 (13)
H5−0.32940.73800.50420.080*
C6−0.2389 (6)0.9273 (7)0.4189 (4)0.0623 (12)
H6−0.31301.01030.47160.075*
C7−0.1181 (6)0.9699 (6)0.3218 (4)0.0484 (9)
C80.0925 (9)0.5424 (7)0.1755 (7)0.0816 (16)
H8A0.21720.47740.20260.122*
H8B0.09170.60640.08580.122*
H8C0.04260.45690.18380.122*
C9−0.1071 (8)1.1485 (6)0.3024 (6)0.0736 (14)
H9A−0.03121.13810.36660.110*
H9B−0.22901.24510.31220.110*
H9C−0.05411.17610.21620.110*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Si10.0486 (7)0.0433 (6)0.0322 (6)−0.0209 (5)−0.0094 (4)0.0021 (4)
Cl10.0869 (10)0.0678 (8)0.0823 (9)−0.0503 (7)−0.0180 (7)−0.0021 (6)
Cl20.0655 (8)0.0787 (9)0.0780 (9)−0.0180 (7)0.0111 (6)−0.0291 (7)
Cl30.0699 (8)0.0822 (8)0.0431 (6)−0.0385 (7)−0.0239 (5)0.0208 (6)
N10.0483 (18)0.0413 (16)0.0266 (14)−0.0197 (14)−0.0087 (12)−0.0002 (12)
C10.054 (2)0.0413 (19)0.0289 (18)−0.0214 (18)−0.0087 (15)0.0009 (15)
C20.047 (2)0.0440 (19)0.0252 (16)−0.0215 (17)−0.0092 (14)0.0006 (15)
C30.059 (3)0.046 (2)0.050 (2)−0.025 (2)−0.0104 (19)−0.0050 (18)
C40.064 (3)0.061 (3)0.068 (3)−0.038 (2)−0.009 (2)0.002 (2)
C50.061 (3)0.094 (4)0.047 (2)−0.045 (3)−0.001 (2)0.001 (2)
C60.054 (3)0.082 (3)0.045 (2)−0.024 (2)0.0039 (19)−0.021 (2)
C70.052 (2)0.050 (2)0.040 (2)−0.0185 (19)−0.0105 (17)−0.0067 (17)
C80.096 (4)0.059 (3)0.100 (4)−0.039 (3)0.013 (3)−0.035 (3)
C90.085 (4)0.059 (3)0.081 (3)−0.029 (3)0.004 (3)−0.033 (3)

Geometric parameters (Å, °)

Si1—N11.684 (3)C4—H40.9300
Si1—Cl32.0119 (13)C5—C61.369 (7)
Si1—Cl22.0142 (17)C5—H50.9300
Si1—Cl12.0170 (14)C6—C71.396 (6)
N1—C11.428 (4)C6—H60.9300
N1—C21.444 (4)C7—C91.507 (6)
C1—C1i1.307 (8)C8—H8A0.9600
C1—H10.9300C8—H8B0.9600
C2—C71.399 (6)C8—H8C0.9600
C2—C31.397 (5)C9—H9A0.9600
C3—C41.372 (6)C9—H9B0.9600
C3—C81.509 (7)C9—H9C0.9600
C4—C51.386 (7)
Cl3···Cl3ii3.3119 (17)
N1—Si1—Cl3108.46 (11)C6—C5—C4120.1 (4)
N1—Si1—Cl2112.31 (12)C6—C5—H5120.0
Cl3—Si1—Cl2108.64 (7)C4—C5—H5120.0
N1—Si1—Cl1112.55 (11)C5—C6—C7121.1 (4)
Cl3—Si1—Cl1109.04 (7)C5—C6—H6119.4
Cl2—Si1—Cl1105.73 (7)C7—C6—H6119.4
C1—N1—C2118.7 (3)C2—C7—C6117.8 (4)
C1—N1—Si1120.1 (2)C2—C7—C9121.8 (4)
C2—N1—Si1121.2 (2)C6—C7—C9120.4 (4)
C1i—C1—N1124.4 (4)C3—C8—H8A109.5
C1i—C1—H1117.8C3—C8—H8B109.5
N1—C1—H1117.8H8A—C8—H8B109.5
C7—C2—C3121.4 (3)C3—C8—H8C109.5
C7—C2—N1119.1 (3)H8A—C8—H8C109.5
C3—C2—N1119.5 (3)H8B—C8—H8C109.5
C4—C3—C2118.7 (4)C7—C9—H9A109.5
C4—C3—C8120.2 (4)C7—C9—H9B109.5
C2—C3—C8121.0 (4)H9A—C9—H9B109.5
C3—C4—C5120.9 (4)C7—C9—H9C109.5
C3—C4—H4119.6H9A—C9—H9C109.5
C5—C4—H4119.5H9B—C9—H9C109.5
Cl3—Si1—N1—C1−176.0 (2)N1—C2—C3—C4173.7 (4)
Cl2—Si1—N1—C1−55.9 (3)C7—C2—C3—C8178.5 (4)
Cl1—Si1—N1—C163.3 (3)N1—C2—C3—C8−4.4 (6)
Cl3—Si1—N1—C25.2 (3)C2—C3—C4—C51.4 (7)
Cl2—Si1—N1—C2125.3 (3)C8—C3—C4—C5179.5 (5)
Cl1—Si1—N1—C2−115.5 (3)C3—C4—C5—C61.0 (7)
C2—N1—C1—C1i0.4 (7)C4—C5—C6—C7−1.5 (7)
Si1—N1—C1—C1i−178.4 (4)C3—C2—C7—C62.9 (6)
C1—N1—C2—C7−91.3 (4)N1—C2—C7—C6−174.2 (3)
Si1—N1—C2—C787.6 (4)C3—C2—C7—C9−177.7 (4)
C1—N1—C2—C391.6 (4)N1—C2—C7—C95.2 (6)
Si1—N1—C2—C3−89.6 (4)C5—C6—C7—C2−0.5 (6)
C7—C2—C3—C4−3.4 (6)C5—C6—C7—C9−179.9 (5)

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2522).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Baker, R. J., Jones, C., Mills, D. P., Pierce, G. A. & Waugh, M. (2008). Inorg. Chim. Acta, 361, 427-435.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 and SAINT Bruker AXS inc., Madison, Wisconsin, USA.
  • Haaf, M., Schmedake, T. A. & West, R. (2000). Acc. Chem. Res.33, 704-714. [PubMed]
  • Haaf, M., Schmiedl, A., Schmedake, T. A., Powell, D. R., Millevolte, A. J., Denk, M. & West, R. (1998). J. Am. Chem. Soc.120, 12714-12719.
  • Jones, C., Junk, P. C., Leary, S. G., Smithies, N. A. & Steed, J. W. (2002). Inorg. Chem. Commun.5, 533-536.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography