PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o512.
Published online 2009 February 11. doi:  10.1107/S1600536809003924
PMCID: PMC2968492

4-Chloro-2-[(E)-(2-chloro­phen­yl)imino­meth­yl]phenol

Abstract

The title compound, C13H9Cl2NO, was crystallized from a methanol solution of 5-chloro­salicylaldehyde and o-chloro­aniline. The mol­ecule displays a trans configuration with respect to the imine C=N double bond. The N atom is involved in an intra­molecular O—H(...)N hydrogen bond. The two aromatic rings are essentially coplanar, the dihedral angle between them being 7.1 (1)°. A C—H(...)π inter­action is present in the crystal.

Related literature

For the biological properties of Schiff bases containing O and N atoms, see: Antony et al. (1999 [triangle]); Lumme & Elo (1984 [triangle]); Yao et al. (1999 [triangle]). For its chemical behaviour, see: Ueno et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o512-scheme1.jpg

Experimental

Crystal data

  • C13H9Cl2NO
  • M r = 266.11
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o512-efi1.jpg
  • a = 7.2693 (13) Å
  • b = 13.0037 (19) Å
  • c = 25.2711 (16) Å
  • V = 2388.8 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.52 mm−1
  • T = 298 (2) K
  • 0.50 × 0.48 × 0.47 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Siemens, 1996 [triangle]) T min = 0.780, T max = 0.791
  • 11102 measured reflections
  • 2103 independent reflections
  • 1496 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.099
  • S = 1.08
  • 2103 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003924/bq2118sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003924/bq2118Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by research project No. 08JZ09 of the Phytochemistry Key Laboratory of Shaanxi Province.

supplementary crystallographic information

Comment

The Schiff base containing some O and N atoms is a new important biological ligand and it shows some interesting biological properties, such as antibacterial, antiphlogistic, anticancer and high catalytic activities (Antony et al., 1999; Lumme & Elo et al., 1984; Yao et al., 1999), so the chemical behavior of the Schiff base has drawn our attention (Ueno et al., 2006). Our research emphasis is focused on the synthesis of the Schiff base. Then, a new crystal structure of the title compound, (I), is reported here.

The molecular structure of (I) are illustrated in Fig. 1. In the structure of (I), the whole molecule is essentially planar with a 7.1 (2)° dihedral angle between the two phenyl rings. The C1═N1 bond distance [1.277 (3)Å] is shorter than the standart 1.28Å value of C═N double bond, indicating a delocalization of π-electron density across the phenyl ring. In addition to the intramolecular O-H..N hydrogen bond, there is also an intermolecular C-H..π interaction (Table 1.)

Experimental

A solution of 5-chlorosalicylaldehyde (0.1 mmol, 15.7 mg) in methanol (10 ml) was added dropwise to the methanol (10 ml) solution of o-chloroaniline (0.1 mmol, 12.8 mg) with stirring. The mixture was stirred at room temperature for one hour and then filtered. After allowing the filtrate to stand in air for 3 d, yellow block-shaped crystals of the title compound were formed in slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 60%).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances 0.93Å and Uiso(H) = 1.2 Ueq(C) and O—H distances 0.82Å and Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.
The structure of the title compound with 30% probability ellipsoids. The dashed line represents hydrogen bond.

Crystal data

C13H9Cl2NOF(000) = 1088
Mr = 266.11Dx = 1.480 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3178 reflections
a = 7.2693 (13) Åθ = 2.9–26.3°
b = 13.0037 (19) ŵ = 0.52 mm1
c = 25.2711 (16) ÅT = 298 K
V = 2388.8 (6) Å3Block, yellow
Z = 80.50 × 0.48 × 0.47 mm

Data collection

Siemens SMART CCD area-detector diffractometer2103 independent reflections
Radiation source: fine-focus sealed tube1496 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Siemens, 1996)h = −8→8
Tmin = 0.780, Tmax = 0.791k = −15→11
11102 measured reflectionsl = −30→29

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.099w = 1/[σ2(Fo2) + (0.0287P)2 + 1.7853P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2103 reflectionsΔρmax = 0.20 e Å3
155 parametersΔρmin = −0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0069 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.07629 (12)1.13163 (6)1.12839 (3)0.0653 (3)
Cl20.41980 (14)0.79479 (6)0.83555 (3)0.0760 (3)
N10.3625 (3)0.96742 (15)0.90783 (8)0.0407 (5)
O10.2932 (4)0.81908 (14)0.97404 (8)0.0734 (7)
H10.32520.84570.94610.110*
C10.3120 (3)1.03135 (19)0.94334 (9)0.0396 (6)
H1A0.31321.10130.93570.048*
C20.2530 (3)0.99774 (18)0.99498 (9)0.0366 (6)
C30.2445 (4)0.89294 (19)1.00872 (10)0.0482 (7)
C40.1860 (4)0.8649 (2)1.05868 (11)0.0591 (8)
H40.18060.79561.06770.071*
C50.1357 (4)0.9376 (2)1.09521 (11)0.0519 (7)
H50.09720.91781.12880.062*
C60.1427 (4)1.04066 (19)1.08177 (10)0.0432 (6)
C70.1990 (4)1.07049 (19)1.03254 (10)0.0422 (6)
H70.20141.14001.02390.051*
C80.4229 (3)0.99867 (19)0.85743 (9)0.0393 (6)
C90.4587 (4)0.9228 (2)0.82003 (11)0.0462 (7)
C100.5255 (4)0.9469 (2)0.77026 (11)0.0588 (8)
H100.54870.89490.74590.071*
C110.5574 (4)1.0476 (3)0.75699 (12)0.0627 (8)
H110.60261.06410.72360.075*
C120.5224 (5)1.1235 (2)0.79298 (12)0.0635 (9)
H120.54391.19180.78390.076*
C130.4556 (4)1.1001 (2)0.84244 (11)0.0544 (7)
H130.43191.15290.86630.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0859 (6)0.0587 (5)0.0515 (4)0.0011 (4)0.0102 (4)−0.0135 (4)
Cl20.1089 (8)0.0424 (4)0.0766 (6)−0.0022 (4)0.0226 (5)−0.0113 (4)
N10.0478 (13)0.0375 (12)0.0367 (11)−0.0015 (10)−0.0029 (10)−0.0003 (10)
O10.128 (2)0.0355 (10)0.0562 (12)0.0156 (12)0.0259 (13)0.0034 (9)
C10.0434 (15)0.0330 (13)0.0424 (14)−0.0013 (11)−0.0043 (12)0.0023 (12)
C20.0385 (13)0.0335 (12)0.0377 (13)−0.0001 (10)−0.0036 (12)0.0011 (11)
C30.0614 (18)0.0379 (14)0.0452 (15)0.0094 (13)0.0001 (14)0.0028 (12)
C40.088 (2)0.0384 (15)0.0512 (16)0.0129 (15)0.0078 (16)0.0119 (14)
C50.0633 (19)0.0532 (17)0.0391 (14)0.0078 (14)0.0032 (14)0.0097 (13)
C60.0467 (16)0.0428 (15)0.0402 (14)0.0026 (12)−0.0029 (12)−0.0038 (12)
C70.0481 (16)0.0343 (13)0.0443 (15)−0.0037 (11)−0.0030 (12)−0.0001 (11)
C80.0390 (14)0.0436 (14)0.0353 (13)−0.0006 (12)−0.0059 (11)0.0024 (11)
C90.0472 (17)0.0435 (15)0.0479 (15)0.0012 (12)−0.0004 (13)−0.0024 (12)
C100.060 (2)0.068 (2)0.0478 (16)0.0039 (16)0.0083 (15)−0.0077 (15)
C110.063 (2)0.080 (2)0.0456 (16)−0.0032 (17)0.0071 (15)0.0107 (17)
C120.082 (2)0.0572 (18)0.0518 (17)−0.0089 (17)0.0014 (16)0.0151 (15)
C130.073 (2)0.0429 (15)0.0475 (16)−0.0042 (14)−0.0005 (15)0.0022 (13)

Geometric parameters (Å, °)

Cl1—C61.738 (3)C5—H50.9300
Cl2—C91.733 (3)C6—C71.366 (3)
N1—C11.277 (3)C7—H70.9300
N1—C81.407 (3)C8—C91.391 (4)
O1—C31.347 (3)C8—C131.393 (4)
O1—H10.8200C9—C101.384 (4)
C1—C21.441 (3)C10—C111.371 (4)
C1—H1A0.9300C10—H100.9300
C2—C71.397 (3)C11—C121.367 (4)
C2—C31.408 (3)C11—H110.9300
C3—C41.381 (4)C12—C131.375 (4)
C4—C51.371 (4)C12—H120.9300
C4—H40.9300C13—H130.9300
C5—C61.383 (4)
C1—N1—C8122.5 (2)C6—C7—H7119.6
C3—O1—H1109.5C2—C7—H7119.6
N1—C1—C2121.6 (2)C9—C8—C13117.1 (2)
N1—C1—H1A119.2C9—C8—N1117.9 (2)
C2—C1—H1A119.2C13—C8—N1124.9 (2)
C7—C2—C3118.4 (2)C10—C9—C8121.5 (3)
C7—C2—C1119.6 (2)C10—C9—Cl2118.7 (2)
C3—C2—C1122.0 (2)C8—C9—Cl2119.8 (2)
O1—C3—C4119.2 (2)C11—C10—C9119.9 (3)
O1—C3—C2121.2 (2)C11—C10—H10120.1
C4—C3—C2119.6 (2)C9—C10—H10120.1
C5—C4—C3121.0 (3)C12—C11—C10119.7 (3)
C5—C4—H4119.5C12—C11—H11120.1
C3—C4—H4119.5C10—C11—H11120.1
C4—C5—C6119.5 (3)C11—C12—C13120.7 (3)
C4—C5—H5120.2C11—C12—H12119.6
C6—C5—H5120.2C13—C12—H12119.6
C7—C6—C5120.6 (2)C12—C13—C8121.2 (3)
C7—C6—Cl1120.5 (2)C12—C13—H13119.4
C5—C6—Cl1118.9 (2)C8—C13—H13119.4
C6—C7—C2120.7 (2)
C8—N1—C1—C2−179.1 (2)C1—C2—C7—C6−179.9 (2)
N1—C1—C2—C7180.0 (2)C1—N1—C8—C9−174.2 (2)
N1—C1—C2—C3−1.2 (4)C1—N1—C8—C138.1 (4)
C7—C2—C3—O1179.4 (3)C13—C8—C9—C100.6 (4)
C1—C2—C3—O10.6 (4)N1—C8—C9—C10−177.4 (3)
C7—C2—C3—C4−0.8 (4)C13—C8—C9—Cl2−179.5 (2)
C1—C2—C3—C4−179.6 (3)N1—C8—C9—Cl22.5 (3)
O1—C3—C4—C5179.8 (3)C8—C9—C10—C11−0.1 (4)
C2—C3—C4—C50.1 (5)Cl2—C9—C10—C11180.0 (2)
C3—C4—C5—C60.3 (5)C9—C10—C11—C12−0.2 (5)
C4—C5—C6—C70.1 (4)C10—C11—C12—C130.1 (5)
C4—C5—C6—Cl1179.4 (2)C11—C12—C13—C80.4 (5)
C5—C6—C7—C2−0.9 (4)C9—C8—C13—C12−0.7 (4)
Cl1—C6—C7—C2179.8 (2)N1—C8—C13—C12177.1 (3)
C3—C2—C7—C61.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.603 (3)147
C11—H11···Cg1i0.932.973.549 (3)122

Symmetry codes: (i) x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2118).

References

  • Antony, F. M., O’Mahony, R. S. & Joyce, M. W. (1999). Croat. Chem. Acta, 72, 685–703.
  • Lumme, P. & Elo, H. (1984). Inorg. Chim. Acta, 92, 241–251.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART, SAINT and SADABS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Ueno, T., Yokoi, N., Unno, M., Matsui, T., Tokita, Y., Yamada, M., Ikeda-Saito, M., Nakajima, H. & Watanabe, Y. (2006). PNAS, 103, 9416–9421. [PubMed]
  • Yao, K. M., Li, N., Huang, Q. H., Shen, L.-F. & Yuan, H.-Z. (1999). Sci. China Ser. B Chem.42, 53–61.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography