PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o607–o608.
Published online 2009 February 25. doi:  10.1107/S1600536809006205
PMCID: PMC2968489

Bis(4-methyl­imidazolium) succinate succinic acid solvate

Abstract

In the title compound, 2C4H7N2 +·C4H4O4 2−·C4H6O4, the asymmetric unit consists of two 4-methyl­imidazolium cations, one succinate dianion and one netrual succinic acid mol­ecule and within the latter components, the C—O, C=O and C O bonds are clearly evidenced from their relative distances. In the crystal structure, the individual components are linked by inter­molecular N—H(...)O, O—H(...)O and C—H(...)O hydrogen bonds into a two-dimensional network parallel to the (101) plane in which R 3 3(9), R 3 3(12) and R 4 4(18) hydrogen-bond motifs are present.

Related literature

For general background on co-crystals, see: Aakeröy & Salmon (2005 [triangle]); Aakeröy et al. (2007 [triangle]); Childs & Hardcastle (2007 [triangle]); Childs et al. (2007 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o607-scheme1.jpg

Experimental

Crystal data

  • 2C4H7N2 +·C4H4O4 2−·C4H6O4
  • M r = 400.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o607-efi1.jpg
  • a = 17.260 (5) Å
  • b = 14.066 (4) Å
  • c = 7.761 (2) Å
  • β = 95.008 (6)°
  • V = 1877.0 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 296 K
  • 0.30 × 0.10 × 0.04 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.957, T max = 0.995
  • 20337 measured reflections
  • 4080 independent reflections
  • 2197 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.153
  • S = 0.95
  • 4080 reflections
  • 273 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006205/lh2776sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006205/lh2776Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant Nos. 10574047, 10574048 and 20490210. This work was also supported by the National 973 Project under grant. No. 2006CB921605.

supplementary crystallographic information

Comment

In recent years, research on co-crystal or organic salts has been expanded rapidly owing to their potential application in the preparation of active pharmaceutical ingredients (Aakeröy et al., 2007; Childs & Hardcastle, 2007; Childs et al., 2007). In this paper, we report an organic salt formed by 4-methyl-imidazole and succinic acid in 95% methanol solution at room temperature, namely bis(4-methyl-imidazolium) succinicate succinic acid, (I).

In (I), the asymmetric unit is composed of two 4-methylimidazolium cations, one succinicate dianion and one netrual succinic acid molecule. The title compound can be regarded as an organic salt according to the definition of Aakeröy and Salmon (2005). One of the succinnic acid molecules is dually deprotonated, leading to a dianion (Fig. 1) which can be evidenced to an extent by the variations of the carboxyl C-O, C ═O and C [equals, single dot above]O bond distances (Table 1).

In the crystal structure, by a combination of four N-H···O and two O-H···O hydrogen bonds (Table 2) molecules in (I) are linked into a two-dimensional network parallel to the (101) plane (Fig.2) in which R33(9), R33(12) and R44(18) hydrogen-bonding motifs are present (Bernstein et al., 1995). Within the network, several weak C-H..O interactions are present. No other interactions, such as C-H···π or π···π are observed in (I).

Experimental

All the reagents and solvents were used as obtained without further purification. A 1:2 molar amounts of succinic acid (0.2 mmol, 23.6 mg) and 4-methyl-imidazole (0.4 mmol, 32.8 mg) were dissolved in 95% methanol (20 ml). The mixture was stirred for half an hour at room temperature and then filtered. The resulting solution was kept in air for one week. Plate crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel.

Refinement

H atoms bonded to C atoms were located in difference maps and subsequently treated as riding, with C–H = 0.93 Å (aromatic), 0.97Å (methylene), 0.96Å (methyl), Uiso(H) = 1.2Ueq( aromatic and methylene C) and 1.5Ueq( methyl C). H atoms bonded to N and O atoms were also found in difference maps and their distances were refined freely (see Table 1 for the distances), and the Uiso(H) values being set k times of their carrier atoms ( k = 1.2 for N and 1.5 for O atoms)

Figures

Fig. 1.
The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H-bonds are shown in dashed lines.
Fig. 2.
Part of the crystal structure of (I), showing the formation of the two-dimensional network parallel to the (101) plane linked by N-H···O, O-H···O and C-H···O hydrogen-bonds. Hydrogen ...

Crystal data

2C4H7N2+·C4H4O42·C4H6O4F(000) = 848
Mr = 400.39Dx = 1.417 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2035 reflections
a = 17.260 (5) Åθ = 2.4–21.1°
b = 14.066 (4) ŵ = 0.12 mm1
c = 7.761 (2) ÅT = 296 K
β = 95.008 (6)°Plate, colorless
V = 1877.0 (9) Å30.30 × 0.10 × 0.04 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer4080 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2197 reflections with I > 2σ(I)
graphiteRint = 0.063
0.3° wide ω exposures scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −22→22
Tmin = 0.957, Tmax = 0.995k = −17→17
20337 measured reflectionsl = −8→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 0.95w = 1/[σ2(Fo2) + (0.0817P)2] where P = (Fo2 + 2Fc2)/3
4080 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.45695 (11)0.47579 (16)0.7860 (3)0.0375 (6)
C20.50516 (13)0.33293 (17)0.7523 (3)0.0476 (6)
H20.53800.28390.72470.057*
C30.40700 (12)0.41101 (16)0.8406 (3)0.0431 (6)
H30.35970.42410.88470.052*
C40.45464 (13)0.58059 (16)0.7747 (3)0.0498 (7)
H4A0.43670.59930.65900.075*
H4B0.50590.60570.80360.075*
H4C0.41990.60500.85400.075*
C50.96099 (11)0.34301 (16)0.3015 (3)0.0342 (5)
C60.91078 (12)0.40732 (16)0.3567 (3)0.0404 (6)
H60.86650.39360.41220.049*
C71.00090 (12)0.48664 (17)0.2388 (3)0.0435 (6)
H71.03020.53610.19860.052*
C80.96426 (13)0.23840 (16)0.3093 (3)0.0454 (6)
H8A0.92130.21500.36760.068*
H8B1.01220.21900.37140.068*
H8C0.96140.21310.19410.068*
C90.83954 (12)0.73296 (15)0.4322 (3)0.0327 (5)
C100.76053 (11)0.71074 (15)0.4945 (3)0.0352 (5)
H10A0.75580.74460.60200.042*
H10B0.72060.73480.41010.042*
C110.74541 (12)0.60712 (15)0.5235 (3)0.0377 (6)
H11A0.78650.58240.60460.045*
H11B0.74820.57370.41500.045*
C120.66724 (12)0.58515 (15)0.5925 (3)0.0374 (6)
C130.70985 (12)0.28540 (16)0.5270 (3)0.0380 (6)
C140.76523 (12)0.20813 (16)0.4875 (3)0.0398 (6)
H14A0.81330.21650.56040.048*
H14B0.77720.21450.36820.048*
C150.73494 (12)0.10900 (16)0.5142 (3)0.0449 (6)
H15A0.72410.10200.63410.054*
H15B0.68630.10090.44310.054*
C160.79014 (13)0.03232 (16)0.4709 (3)0.0410 (6)
N10.43813 (11)0.32252 (14)0.8197 (3)0.0457 (5)
H10.4148 (14)0.2622 (18)0.842 (3)0.055*
N20.51776 (10)0.42424 (13)0.7306 (3)0.0413 (5)
H2A0.5629 (13)0.4491 (16)0.678 (3)0.050*
N30.93627 (10)0.49658 (14)0.3170 (2)0.0433 (5)
H3A0.9102 (13)0.5635 (17)0.342 (3)0.052*
N41.01708 (10)0.39539 (13)0.2269 (2)0.0386 (5)
H41.0622 (13)0.3685 (15)0.177 (3)0.046*
O10.88428 (9)0.66845 (11)0.3982 (2)0.0565 (5)
O20.85672 (8)0.82023 (10)0.4172 (2)0.0453 (4)
O30.65044 (8)0.49741 (10)0.6087 (2)0.0461 (4)
O40.62385 (9)0.64950 (11)0.6310 (3)0.0647 (6)
O50.73726 (9)0.37014 (12)0.5060 (2)0.0542 (5)
H50.7020 (17)0.419 (2)0.544 (3)0.081*
O60.64637 (10)0.27081 (12)0.5766 (3)0.0671 (6)
O70.84928 (10)0.04663 (12)0.4027 (3)0.0639 (6)
O80.76793 (10)−0.05217 (12)0.5142 (3)0.0605 (6)
H80.8020 (17)−0.105 (2)0.473 (4)0.091*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0270 (11)0.0344 (13)0.0528 (14)0.0012 (9)0.0138 (10)−0.0009 (11)
C20.0344 (13)0.0358 (15)0.0763 (18)−0.0018 (11)0.0253 (12)−0.0020 (13)
C30.0284 (12)0.0410 (15)0.0625 (16)−0.0039 (11)0.0202 (11)0.0011 (12)
C40.0381 (14)0.0369 (15)0.0772 (18)−0.0010 (11)0.0215 (13)0.0039 (13)
C50.0255 (10)0.0325 (13)0.0465 (14)−0.0003 (9)0.0148 (10)−0.0016 (10)
C60.0282 (12)0.0356 (14)0.0606 (16)0.0007 (10)0.0217 (11)−0.0004 (11)
C70.0356 (13)0.0347 (15)0.0629 (16)−0.0005 (10)0.0199 (11)−0.0009 (12)
C80.0384 (13)0.0350 (14)0.0663 (17)0.0041 (10)0.0233 (12)0.0009 (12)
C90.0264 (11)0.0247 (12)0.0488 (14)−0.0004 (9)0.0130 (10)−0.0008 (10)
C100.0279 (11)0.0303 (13)0.0497 (14)−0.0003 (9)0.0167 (10)0.0027 (10)
C110.0284 (11)0.0291 (13)0.0583 (15)−0.0022 (9)0.0186 (11)0.0014 (11)
C120.0307 (12)0.0264 (13)0.0573 (16)0.0006 (10)0.0162 (11)−0.0019 (11)
C130.0300 (11)0.0330 (14)0.0532 (15)0.0001 (10)0.0164 (10)0.0005 (11)
C140.0293 (12)0.0372 (14)0.0553 (15)0.0034 (10)0.0167 (11)−0.0011 (11)
C150.0314 (12)0.0370 (15)0.0693 (17)0.0051 (10)0.0222 (12)−0.0016 (12)
C160.0322 (12)0.0341 (14)0.0594 (15)0.0004 (10)0.0184 (11)−0.0030 (11)
N10.0371 (11)0.0327 (12)0.0697 (14)−0.0074 (9)0.0195 (10)0.0020 (10)
N20.0298 (10)0.0333 (12)0.0639 (13)−0.0044 (8)0.0223 (9)0.0000 (10)
N30.0353 (10)0.0325 (12)0.0645 (14)0.0056 (9)0.0183 (9)−0.0042 (10)
N40.0280 (10)0.0344 (12)0.0561 (13)0.0016 (8)0.0200 (9)−0.0018 (9)
O10.0422 (10)0.0304 (10)0.1026 (14)0.0040 (7)0.0383 (9)−0.0027 (9)
O20.0326 (9)0.0257 (9)0.0821 (12)−0.0009 (7)0.0309 (8)0.0033 (8)
O30.0342 (8)0.0266 (9)0.0819 (12)−0.0027 (7)0.0300 (8)0.0026 (8)
O40.0474 (10)0.0309 (10)0.1235 (16)0.0039 (8)0.0513 (11)−0.0015 (10)
O50.0409 (9)0.0291 (10)0.0980 (15)0.0005 (7)0.0368 (10)−0.0032 (9)
O60.0406 (10)0.0420 (11)0.1255 (16)0.0021 (8)0.0465 (11)0.0062 (10)
O70.0452 (10)0.0430 (11)0.1108 (15)0.0044 (8)0.0480 (10)0.0016 (10)
O80.0464 (10)0.0310 (11)0.1109 (16)0.0043 (8)0.0453 (10)0.0041 (10)

Geometric parameters (Å, °)

C1—C31.348 (3)C10—C111.501 (3)
C1—N21.375 (3)C10—H10A0.9700
C1—C41.477 (3)C10—H10B0.9700
C2—N21.316 (3)C11—C121.526 (3)
C2—N11.319 (3)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—N11.371 (3)C12—O41.228 (3)
C3—H30.9300C12—O31.276 (2)
C4—H4A0.9600C13—O61.210 (2)
C4—H4B0.9600C13—O51.298 (3)
C4—H4C0.9600C13—C141.497 (3)
C5—C61.348 (3)C14—C151.510 (3)
C5—N41.383 (3)C14—H14A0.9700
C5—C81.474 (3)C14—H14B0.9700
C6—N31.374 (3)C15—C161.497 (3)
C6—H60.9300C15—H15A0.9700
C7—N41.319 (3)C15—H15B0.9700
C7—N31.323 (3)C16—O71.207 (2)
C7—H70.9300C16—O81.302 (3)
C8—H8A0.9600N1—H10.96 (2)
C8—H8B0.9600N2—H2A0.97 (2)
C8—H8C0.9600N3—H3A1.07 (2)
C9—O11.235 (2)N4—H40.98 (2)
C9—O21.271 (2)O5—H50.98 (3)
C9—C101.519 (3)O8—H81.02 (3)
C3—C1—N2105.6 (2)C10—C11—H11A108.6
C3—C1—C4132.7 (2)C12—C11—H11A108.6
N2—C1—C4121.66 (19)C10—C11—H11B108.6
N2—C2—N1108.6 (2)C12—C11—H11B108.6
N2—C2—H2125.7H11A—C11—H11B107.5
N1—C2—H2125.7O4—C12—O3122.69 (19)
C1—C3—N1107.98 (19)O4—C12—C11120.84 (19)
C1—C3—H3126.0O3—C12—C11116.47 (18)
N1—C3—H3126.0O6—C13—O5123.1 (2)
C1—C4—H4A109.5O6—C13—C14123.7 (2)
C1—C4—H4B109.5O5—C13—C14113.25 (18)
H4A—C4—H4B109.5C13—C14—C15114.05 (17)
C1—C4—H4C109.5C13—C14—H14A108.7
H4A—C4—H4C109.5C15—C14—H14A108.7
H4B—C4—H4C109.5C13—C14—H14B108.7
C6—C5—N4105.58 (19)C15—C14—H14B108.7
C6—C5—C8132.85 (19)H14A—C14—H14B107.6
N4—C5—C8121.57 (18)C16—C15—C14113.57 (18)
C5—C6—N3108.32 (18)C16—C15—H15A108.9
C5—C6—H6125.8C14—C15—H15A108.9
N3—C6—H6125.8C16—C15—H15B108.9
N4—C7—N3109.1 (2)C14—C15—H15B108.9
N4—C7—H7125.4H15A—C15—H15B107.7
N3—C7—H7125.4O7—C16—O8123.0 (2)
C5—C8—H8A109.5O7—C16—C15123.9 (2)
C5—C8—H8B109.5O8—C16—C15113.10 (19)
H8A—C8—H8B109.5C2—N1—C3108.21 (19)
C5—C8—H8C109.5C2—N1—H1124.3 (15)
H8A—C8—H8C109.5C3—N1—H1127.4 (15)
H8B—C8—H8C109.5C2—N2—C1109.59 (18)
O1—C9—O2122.35 (18)C2—N2—H2A123.4 (13)
O1—C9—C10120.83 (19)C1—N2—H2A126.9 (13)
O2—C9—C10116.82 (18)C7—N3—C6107.79 (19)
C11—C10—C9114.85 (17)C7—N3—H3A124.3 (12)
C11—C10—H10A108.6C6—N3—H3A127.9 (12)
C9—C10—H10A108.6C7—N4—C5109.20 (18)
C11—C10—H10B108.6C7—N4—H4126.0 (13)
C9—C10—H10B108.6C5—N4—H4124.8 (13)
H10A—C10—H10B107.5C13—O5—H5111.4 (16)
C10—C11—C12114.83 (17)C16—O8—H8113.4 (16)
N2—C1—C3—N10.7 (3)C14—C15—C16—O7−8.0 (4)
C4—C1—C3—N1179.0 (3)C14—C15—C16—O8172.0 (2)
N4—C5—C6—N3−0.3 (3)N2—C2—N1—C30.3 (3)
C8—C5—C6—N3179.4 (2)C1—C3—N1—C2−0.6 (3)
O1—C9—C10—C114.6 (3)N1—C2—N2—C10.1 (3)
O2—C9—C10—C11−175.4 (2)C3—C1—N2—C2−0.5 (3)
C9—C10—C11—C12177.83 (19)C4—C1—N2—C2−179.0 (2)
C10—C11—C12—O4−4.7 (3)N4—C7—N3—C60.2 (3)
C10—C11—C12—O3175.8 (2)C5—C6—N3—C70.0 (3)
O6—C13—C14—C150.2 (4)N3—C7—N4—C5−0.4 (3)
O5—C13—C14—C15179.0 (2)C6—C5—N4—C70.4 (3)
C13—C14—C15—C16178.83 (19)C8—C5—N4—C7−179.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.96 (2)1.74 (2)2.699 (3)176 (2)
N2—H2A···O30.97 (2)1.78 (2)2.752 (2)173.0 (19)
N3—H3A···O11.07 (2)1.61 (2)2.673 (2)170.6 (19)
N4—H4···O2ii0.98 (2)1.77 (2)2.745 (2)178.8 (19)
O5—H5···O30.98 (3)1.53 (3)2.509 (2)177 (3)
O8—H8···O2iii1.02 (3)1.50 (3)2.518 (2)176 (3)
C2—H2···O60.932.293.024 (3)136
C3—H3···O8iv0.932.433.354 (3)176
C6—H6···O50.932.433.346 (3)169
C7—H7···O7v0.932.293.017 (3)134

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+2, y−1/2, −z+1/2; (iii) x, y−1, z; (iv) −x+1, y+1/2, −z+3/2; (v) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2776).

References

  • Aakeröy, C. B., Fasulo, M. E. & Desper, J. (2007). Mol. Pharm.4, 317–322. [PubMed]
  • Aakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439–448.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2001). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Childs, S. L. & Hardcastle, K. I. (2007). Cryst. Growth Des.7, 1291–1304.
  • Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm.4, 323–338. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography