PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): i18–i19.
Published online 2009 February 21. doi:  10.1107/S1600536809005601
PMCID: PMC2968486

Synthesis, crystal structure and Raman spectrum of K2[(Pt2)(HPO4)4(H2O)2] containing (Pt2)6+ ions

Abstract

In the crystal structure of the acid platinum phosphate dipotassium di-μ-hydrogenphosphato-bis­[aqua­platinum(III)](PtPt), K2[Pt2(HPO4)4(H2O)2], the (Pt2)6+ dumbbells within the paddle-wheel complex show Pt—Pt distances of 2.4944 (5) and 2.4892 (5) Å. The pottassium ions are seven-fold coordinated by hydrogenphosphate groups. In the crystal, O—H(...)O hydrogen bonds help to establish the packing. The Raman spectrum was recorded.

Related literature

The structure of the title isotypic sodium compound, Na2[Pt2(HPO4)4(H2O)2], was determined by Cotton et al. (1982a [triangle]). For platinum phosphates, see: Wellmann & Liebau (1981 [triangle]). For related compounds containing dinuclear plati­num(III), see: Bancroft et al. (1984 [triangle]); Baranovskii & Schelokow (1978 [triangle]); Che et al. (1982 [triangle]); Cotton & Walton (1982b [triangle]); Dikareva et al. (1982 [triangle], 1987 [triangle]); Muraveiskaya et al. (1974 [triangle], 1976 [triangle]); Pley & Wickleder (2004a [triangle],b [triangle], 2005 [triangle]); Stein et al. (1983 [triangle]); Woollins & Kelly (1985 [triangle]). For the ternary system Pd/P/O, see: Palkina et al. (1978 [triangle]); Panagiotidis et al. (2005 [triangle]). For hydrogen bonds, see: Steiner (2002 [triangle]). For the Raman spectra of In3(PO4)2 and In2O(PO4), see: Thauern & Glaum (2004 [triangle]). For the synthesis, see: Brauer (1978 [triangle]).

Experimental

Crystal data

  • K2[Pt2(HPO4)4(H2O)2]
  • M r = 888.32
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00i18-efi2.jpg
  • a = 7.8852 (2) Å
  • b = 7.9657 (2) Å
  • c = 13.7739 (4) Å
  • α = 82.358 (1)°
  • β = 81.509 (1)°
  • γ = 65.528 (1)°
  • V = 776.32 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 19.05 mm−1
  • T = 123 K
  • 0.24 × 0.14 × 0.08 mm

Data collection

  • Nonius Kappa CCD diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.060, T max = 0.224
  • 18915 measured reflections
  • 5589 independent reflections
  • 4077 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.086
  • S = 0.98
  • 5589 reflections
  • 259 parameters
  • 10 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 3.46 e Å−3
  • Δρmin = −2.87 e Å−3

Data collection: COLLECT (Hooft, 2004 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ATOMS (Dowty, 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005601/er2058sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005601/er2058Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank G. Schnakenburg (University of Bonn) for the single-crystal data collection and D. Ernsthäuser (University of Bonn) for the measurement of the Raman spectrum. This work was financially supported by Deutsche Forschungsgemeinschaft (DFG). A noble metal donation by UMICORE AG (Hanau-Wolfgang, Germany) is gratefully acknowledged.

supplementary crystallographic information

Comment

Information on phosphates of noble metals like platinum and palladium is scarcely found in literature. During our recent investigation of the ternary system Pd/P/O we obtained the diphosphate PdII2P2O7 (Panagiotidis et al., 2005) in addition to the already known Pd(PO3)2 (Palkina et al., 1978). In this context we were also interested in the crystal chemistry of platinum phosphates. Up to now, PtIVP2O7 (Wellmann & Liebau, 1981) is the only structurally characterized anhydrous phosphate of platinum. Since reactions starting from "PtO×3H2O" and P4O10 did not yield products suitable for closer investigation we tried an alternative synthetic approach by reacting K2PtCl4 with conc. H3PO4 (see Experimental). This led to the formation of orange crystals of K2[(Pt2)(HPO4)4(H2O)2]. The acid phosphate is isotypic to the sodium compound (Cotton et al., 1982a). In contrast to the structure of Na2[(Pt2)(HPO4)4(H2O)2] no disordered oxygen atoms are observed in the potassium compound. Distances d(Pt—Pt) for both structures are identical. The conventional residual as well as the standard deviations of the interatomic distances are slightly smaller for the refinement of K2[(Pt2)(HPO4)4(H2O)2]. The (Pt2)6+ binuclear complex was first observed in the crystal structure of K2[(Pt2(SO4)4(H2O)2] (Muraveiskaya et al., 1974; Muraveiskaya et al., 1976). By reaction of elemental platinum with concentrated sulfuric acid various platinum(III) sulfates were recently synthesized and structurally characterized (Pley & Wickleder, 2004a,b; Pley & Wickleder, 2005).

In K2[(Pt2)(HPO4)4(H2O)2] two crystallographically equivalent platinum atoms are connected to form (Pt2)6+ dinuclear complexes with surrounding (HPO4)2- groups (Fig. 1). The ligating oxygen atoms of the (HPO4)2- ions are arranged in a square-planar coordination around each platinum atom. Distances d(Pt—O) range from 1.978 Å to 2.030 Å. Angles left angle bracket(O,Pt,O) are deviating only slightly from 90° and 180°, respectively. Due to their different crystal chemical environment, the oxygen atoms of the hydrogenphosphate anions show significantly different bond lenghts d(P—O). Oxygen atoms attached to platinum (coordination number of oxygen c.n.(O) = 2 (P, Pt)) show distances d(P—O) = 1.55 Å. Distances d(P—O) for those oxygen atoms which are coordinated to K+ ions (c.n.(O) = 2 (P, K)) range from 1.489 Å to 1.507 Å. Furthermore, for oxygen atoms which are attached to a hydrogen atom within the (HPO4)2- unit (c.n.(O) = 2, (P, H)), distances d(P—OH) around 1.565 Å are observed. The axial ligand positions of the Pt2 dumbbells are occupied by water molecules (Fig. 1 & 2). Distances d(Pt—O) = 2.135 Å observed for the water ligands are significantly longer than those within the [Pt2O8] entity. The hydrogen atoms of [HPO4] tetrahedra (H14, H24, H34, H42; numbering according to the oxygen atoms that cary the hydrogen) and the water molecules (H1A, H1B, H10A, H10B) are involved in hydrogen bonding with oxygen atoms of adjacent [(Pt2)(HPO4)(H2O)2]2- units. Interatomic distances d(OH···OP) range from 1.73 Å to 2.27 Å. They are in good accordance with those observed for strong hydrogen bonds (Steiner, 2002).

As found for various other compounds containing the (Pt2)6+ dinuclear complex, the angle left angle bracket(Pt,Pt,O) between the dumbbell and the axial oxygen atoms deviates only slightly from 180° (Cotton et al., 1982b; Pley & Wickleder et al., 2005). [HPO4] tetrahedra in [(Pt2)(HPO4)(H2O)2]2- show no significant angular distortion. Charge compensation of the anionic [PtIII2(HPO4)4(H2O)2]2- unit is achieved by two crystallographically independent K+ ions, which are surrounded by oxygen atoms of phosphate groups.

In addition to its structure refinement, we were able to record the Raman spectrum of the paddle-wheel complex [PtIII2(HPO4)4(H2O)2]2- (Fig. 3). An unequivocal assignment of the observed signals is yet impossible. Comparison of the Raman spectrum to those of the In24+ containing indium phosphates In3(PO4)2 and In2O(PO4) (Thauern & Glaum, 2004) suggests the Pt—Pt valence vibration to be at ν = 222 cm-1. In comparison to ν(Pt—Pt) in complexes [(PtIII2)L4L'2]n- (Stein et al., 1983) assignment of ν = 83 cm-1 to the Pt—Pt vibration appears to be unreasonable. This is the more so, since d (Pt—Pt) = 2.51 Å observed for K2[(Pt2)(HPO4)4(H2O)2] is close to the lower limit of 2.47 Å < d (Pt—Pt) < 2.695 Å found for a series of dinuclear platinum(III) complexes (Che et al., 1982, Stein et al., 1983, Muraveiskaya et al., 1974).

Experimental

Aiming at the crystallization of "Pt2P2O7" a reaction starting from 150.0 mg K2PtIICl4, which were dissolved in water and mixed with 5.0 ml conc. H3PO4, was performed. After the obtained red solution was kept in a desiccator over P2O5 for two weeks, plate-like, orange crystals of K2[(Pt2)(HPO4)4(H2O)2] with edge-lengths up to 0.3 mm were deposited besides microcrystalline platinum (eq. 1). The synthesis of K2[PtIICl4] was performed according to the procedure given by Brauer (1978).

3 K2[PtIICl4] + 4 H3PO4 + 2 H2O → K2[(PtIII2)(HPO4)4(H2O)2] + Pts + 8H+ + 12 C l- + 4 K+ (eq. 1)

Figures

Fig. 1.
Pa ddle-wheel complex [(PtIII2)(HPO4)4(H2O)2] with anisotropic displacement parameters given at the 50% level (Progr. ATOMS v.6.2).
Fig. 2.
Projection of the crystal strucure of K2[(Pt2)(HPO4)4(H2O)2] along [110]. [PO4] tetrahedra (yellow), Pt26+ (red), K+ (violet), H+ (blue), O2- (white) (Progr. ATOMS v.6.2).
Fig. 3.
Raman spectrum of K2[(Pt2)(HPO4)4(H2O)2].

Crystal data

K2[Pt2(HPO4)4(H2O)2]Z = 2
Mr = 888.32F(000) = 812
Triclinic, P1The lattice parameters of K2[Pt2(HPO4)4(H2O)2] were determined from single crystal diffraction data.
Hall symbol: -P 1Dx = 3.800 Mg m3
a = 7.8852 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9657 (2) ÅCell parameters from 5589 reflections
c = 13.7739 (4) Åθ = 1.5–32.5°
α = 82.358 (1)°µ = 19.05 mm1
β = 81.509 (1)°T = 123 K
γ = 65.528 (1)°Plate, orange
V = 776.32 (4) Å30.24 × 0.14 × 0.08 mm

Data collection

Nonius Kappa CCD diffractometer5589 independent reflections
Radiation source: MoKα4077 reflections with I > 2σ(I)
graphiteRint = 0.064
Detector resolution: 9 pixels mm-1θmax = 32.5°, θmin = 1.5°
CCD rotation images scansh = −11→11
Absorption correction: multi-scan (Blessing, 1995)k = −12→12
Tmin = 0.060, Tmax = 0.224l = −19→20
18915 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 0.98w = 1/[σ2(Fo2) + (0.0423P)2] where P = (Fo2 + 2Fc2)/3
5589 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 3.46 e Å3
10 restraintsΔρmin = −2.87 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances and angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
K10.1242 (4)−0.3657 (4)0.6326 (2)0.0790 (9)
K20.3845 (3)−0.1884 (3)0.90856 (15)0.0472 (5)
O10.6393 (7)0.2464 (8)0.6286 (4)0.0289 (11)
H1A0.566 (8)0.299 (10)0.676 (4)0.043*
H1B0.734 (6)0.175 (9)0.656 (5)0.043*
O120.6784 (7)−0.1304 (6)0.6372 (3)0.0238 (10)
O140.4660 (7)−0.2761 (7)0.7170 (4)0.0305 (11)
H140.486 (13)−0.387 (4)0.717 (6)0.046*
O110.8028 (7)−0.4742 (7)0.6678 (3)0.0256 (10)
O130.5849 (7)−0.3216 (6)0.5370 (3)0.0245 (10)
O220.7832 (6)0.0412 (7)0.4628 (4)0.0247 (10)
O240.9754 (7)−0.3003 (7)0.4569 (3)0.0276 (11)
H241.045 (10)−0.372 (10)0.415 (5)0.041*
O210.9903 (7)−0.0893 (7)0.3117 (4)0.0298 (11)
O230.6936 (6)−0.1446 (7)0.3608 (3)0.0267 (10)
O100.2526 (7)0.5993 (7)0.1437 (3)0.0249 (10)
H10A0.207 (11)0.719 (3)0.141 (5)0.037*
H10B0.226 (11)0.582 (9)0.2058 (19)0.037*
O32−0.1067 (6)0.5907 (6)0.1622 (3)0.0212 (9)
O33−0.3103 (6)0.5226 (6)0.0567 (3)0.0199 (9)
O34−0.4078 (7)0.8408 (7)0.1168 (4)0.0286 (11)
H34−0.520 (4)0.896 (11)0.107 (6)0.043*
O31−0.4038 (6)0.5674 (7)0.2362 (3)0.0231 (10)
O44−0.0110 (6)0.8018 (7)0.0001 (3)0.0236 (10)
O41−0.2456 (6)1.0558 (6)−0.0996 (3)0.0233 (10)
O43−0.2059 (6)0.7307 (6)−0.1068 (3)0.0210 (9)
O420.0530 (7)0.8330 (7)−0.1816 (4)0.0310 (12)
H420.050 (13)0.930 (7)−0.162 (6)0.047*
P10.6381 (2)−0.3051 (2)0.63814 (12)0.0220 (3)
P20.8592 (2)−0.1187 (2)0.39488 (12)0.0215 (3)
P3−0.3082 (2)0.6280 (2)0.14389 (12)0.0180 (3)
P4−0.1056 (2)0.8585 (2)−0.09741 (12)0.0187 (3)
Pt10.54549 (3)0.09217 (3)0.549475 (17)0.01966 (7)
Pt20.09528 (3)0.53533 (3)0.052197 (16)0.01543 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
K10.101 (2)0.087 (2)0.0691 (17)−0.0526 (18)−0.0488 (16)0.0208 (15)
K20.0525 (12)0.0601 (13)0.0406 (10)−0.0346 (11)0.0048 (9)−0.0133 (9)
O10.030 (3)0.030 (3)0.029 (3)−0.013 (2)0.000 (2)−0.010 (2)
O120.030 (2)0.020 (2)0.021 (2)−0.011 (2)−0.0040 (19)0.0035 (18)
O140.032 (3)0.028 (3)0.028 (3)−0.014 (2)0.007 (2)0.001 (2)
O110.028 (2)0.021 (2)0.019 (2)−0.003 (2)−0.0023 (19)0.0031 (18)
O130.029 (2)0.019 (2)0.021 (2)−0.006 (2)−0.0018 (19)0.0019 (18)
O220.019 (2)0.023 (2)0.030 (3)−0.007 (2)0.0021 (19)−0.005 (2)
O240.029 (3)0.026 (3)0.019 (2)−0.005 (2)0.0028 (19)0.0021 (19)
O210.022 (2)0.031 (3)0.029 (3)−0.008 (2)0.0055 (19)0.007 (2)
O230.021 (2)0.028 (3)0.025 (2)−0.005 (2)0.0031 (19)−0.006 (2)
O100.028 (2)0.032 (3)0.020 (2)−0.018 (2)−0.0068 (19)0.0045 (19)
O320.018 (2)0.023 (2)0.020 (2)−0.0061 (19)−0.0014 (17)−0.0005 (18)
O330.018 (2)0.025 (2)0.016 (2)−0.0101 (19)0.0043 (16)−0.0019 (17)
O340.020 (2)0.025 (3)0.038 (3)−0.006 (2)−0.003 (2)−0.001 (2)
O310.024 (2)0.026 (3)0.019 (2)−0.013 (2)0.0055 (18)−0.0032 (18)
O440.021 (2)0.023 (2)0.028 (2)−0.011 (2)−0.0080 (18)0.0054 (19)
O410.021 (2)0.017 (2)0.031 (3)−0.0073 (19)−0.0051 (19)0.0016 (19)
O430.022 (2)0.020 (2)0.019 (2)−0.0077 (19)−0.0011 (17)0.0025 (17)
O420.025 (2)0.025 (3)0.034 (3)−0.007 (2)0.008 (2)0.004 (2)
P10.0237 (8)0.0200 (8)0.0183 (8)−0.0061 (7)−0.0002 (6)0.0009 (6)
P20.0194 (8)0.0218 (9)0.0189 (8)−0.0066 (7)0.0020 (6)0.0024 (6)
P30.0150 (7)0.0204 (8)0.0172 (7)−0.0071 (6)0.0016 (6)−0.0005 (6)
P40.0167 (7)0.0176 (8)0.0190 (7)−0.0057 (6)−0.0011 (6)0.0033 (6)
Pt10.02042 (12)0.01997 (13)0.01736 (12)−0.00806 (10)0.00056 (9)−0.00042 (9)
Pt20.01457 (11)0.01729 (12)0.01430 (11)−0.00707 (9)−0.00109 (8)0.00101 (8)

Geometric parameters (Å, °)

K1—O24i2.739 (6)O24—P21.570 (5)
K1—O31ii2.860 (5)O21—P21.489 (5)
K1—O11i2.957 (6)O23—P21.549 (5)
K1—O42iii3.047 (6)O23—Pt1iv2.014 (5)
K1—O22iv3.053 (5)O10—Pt22.132 (5)
K1—O32ii3.156 (5)O32—P31.544 (5)
K1—O12i3.222 (6)O32—Pt21.978 (4)
K2—O142.735 (6)O33—P31.561 (5)
K2—O34v2.822 (6)O33—Pt2vii2.030 (4)
K2—O41v2.858 (5)O34—P31.564 (5)
K2—O33ii2.920 (5)O31—P31.507 (4)
K2—O42iii2.990 (6)O44—P41.555 (5)
K2—O43vi3.000 (5)O44—Pt22.005 (5)
K2—O44iii3.215 (5)O41—P41.500 (5)
O1—Pt12.143 (5)O43—P41.553 (5)
O12—P11.549 (5)O43—Pt2vii2.014 (4)
O12—Pt11.992 (4)O42—P41.541 (5)
O14—P11.564 (5)Pt1—O13iv2.010 (4)
O11—P11.493 (5)Pt1—O23iv2.014 (5)
O13—P11.549 (5)Pt1—Pt1iv2.4944 (5)
O13—Pt1iv2.010 (4)Pt2—O43vii2.014 (4)
O22—P21.541 (5)Pt2—O33vii2.030 (4)
O22—Pt11.985 (4)Pt2—Pt2vii2.4892 (5)
O11—P1—O12110.2 (3)O22—Pt1—O23iv179.02 (19)
O11—P1—O13110.9 (3)O12—Pt1—O23iv90.37 (19)
O12—P1—O13111.5 (3)O13iv—Pt1—O23iv89.97 (19)
O11—P1—O14110.2 (3)O22—Pt1—O185.5 (2)
O12—P1—O14104.8 (3)O12—Pt1—O188.0 (2)
O13—P1—O14109.0 (3)O13iv—Pt1—O190.0 (2)
O21—P2—O22111.1 (3)O23iv—Pt1—O193.6 (2)
O21—P2—O23113.2 (3)O22—Pt1—Pt1iv90.98 (14)
O22—P2—O23109.6 (3)O12—Pt1—Pt1iv91.86 (14)
O21—P2—O24106.9 (3)O13iv—Pt1—Pt1iv90.05 (14)
O22—P2—O24107.7 (3)O23iv—Pt1—Pt1iv89.91 (15)
O23—P2—O24108.1 (3)O1—Pt1—Pt1iv176.49 (14)
O31—P3—O32108.9 (3)O32—Pt2—O4490.05 (19)
O31—P3—O33109.3 (3)O32—Pt2—O43vii89.88 (18)
O32—P3—O33111.8 (3)O44—Pt2—O43vii178.49 (18)
O31—P3—O34111.6 (3)O32—Pt2—O33vii177.57 (17)
O32—P3—O34106.3 (3)O44—Pt2—O33vii90.65 (19)
O33—P3—O34108.9 (3)O43vii—Pt2—O33vii89.36 (18)
O41—P4—O42110.7 (3)O32—Pt2—O1087.17 (19)
O41—P4—O43109.3 (3)O44—Pt2—O1089.05 (19)
O42—P4—O43110.0 (3)O43vii—Pt2—O1089.45 (19)
O41—P4—O44110.6 (3)O33vii—Pt2—O1090.51 (18)
O42—P4—O44106.4 (3)O32—Pt2—Pt2vii91.55 (13)
O43—P4—O44109.7 (2)O44—Pt2—Pt2vii90.52 (13)
O22—Pt1—O1289.21 (19)O43vii—Pt2—Pt2vii90.99 (13)
O22—Pt1—O13iv90.42 (19)O33vii—Pt2—Pt2vii90.77 (13)
O12—Pt1—O13iv178.06 (19)O10—Pt2—Pt2vii178.65 (14)

Symmetry codes: (i) x−1, y, z; (ii) −x, −y, −z+1; (iii) x, y−1, z+1; (iv) −x+1, −y, −z+1; (v) −x, −y+1, −z+1; (vi) x+1, y−1, z+1; (vii) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O31v0.83 (6)1.73 (6)2.559 (7)173 (8)
O1—H1B···O21viii0.84 (6)2.09 (4)2.860 (7)153 (8)
O14—H14···O31ii0.83 (2)1.82 (5)2.548 (7)146 (9)
O24—H24···O11ix0.84 (7)1.73 (7)2.562 (7)177 (9)
O34—H34···O41x0.83 (6)1.74 (3)2.546 (6)162 (9)
O10—H10A···O41xi0.86 (2)1.94 (4)2.713 (7)148 (7)
O10—H10B···O11iv0.86 (2)1.86 (2)2.694 (6)164 (6)
O42—H42···O21xii0.84 (7)2.27 (9)2.475 (7)94 (6)

Symmetry codes: (v) −x, −y+1, −z+1; (viii) −x+2, −y, −z+1; (ii) −x, −y, −z+1; (ix) −x+2, −y−1, −z+1; (x) −x−1, −y+2, −z; (xi) −x, −y+2, −z; (iv) −x+1, −y, −z+1; (xii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2058).

References

  • Bancroft, D. P., Cotton, F. A., Falvello, L. R., Han, S. & Schwotzer, W. (1984). Inorg. Chim. Acta, 87, 147–153.
  • Baranovskii, I. B. & Schelokow, R. N. (1978). Russ. J. Inorg. Chem.23, 3–17.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Brauer, G. (1978). In Handbuch der Präparativen und Anorganischen Chemie Stuttgart: Ferdinand Enke.
  • Che, C. M., Schaefer, W. P., Gray, H. B., Dickson, M. K., Stein, P. & Roundhill, D. M. (1982). J. Am. Chem. Soc.104, 4253–4255.
  • Cotton, F. A. & Walton, R. A. (1982b). In Multiple Bonds between Metal Atoms New York: Wiley.
  • Cotton, F. A., Walton, R. A. & Han, S. (1982a). Inorg. Chem.21, 1709–1710.
  • Dikareva, L. M., Sadikov, G. G., Porai-Koshits, M. A., Baranovskii, I. B., Abdullaev, S. S. & Schelokow, R. N. (1982). Russ. J. Inorg. Chem.27, 417–423.
  • Dikareva, L. M., Zefirov, Yu. V., Zhilyaev, A. N., Baranovskii, I. B. & Porai-Koshits, M. A. (1987). Russ. J. Inorg. Chem.32, 118–125.
  • Dowty, E. (2006). ATOMS for Windows Shape Software, Kingsport, Tennessee, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hooft, R. W. W. (2004). COLLECT Nonius BV, Delft, The Netherlands.
  • Muraveiskaya, G. S., Kukina, G. A., Orlova, V. S., Evstaf’eva, O. N. & Porai-Koshits, M. A. (1976). Dokl. Akad. Nauk SSSR, 226, 596–599.
  • Muraveiskaya, G. S., Orlova, V. S. & Evstaf’eva, O. N. (1974). Russ. J. Inorg. Chem.19, 1030–1035.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Palkina, K. K., Maksimova, S. I., Lavrov, A. V. & Chalisova, N. A. (1978). Dokl. Akad. Nauk SSSR, 242, 829–831.
  • Panagiotidis, K., Glaum, R., Schmedt auf der Günne, J., Hoffbauer, W. & Görzel, H. (2005). Z. Anorg. Allg. Chem.631, 2371–2376.
  • Pley, M. & Wickleder, M. S. (2004a). Z. Anorg. Allg. Chem.630, 1036–1039.
  • Pley, M. & Wickleder, M. S. (2004b). Angew. Chem.116, 4262–4264.
  • Pley, M. & Wickleder, M. S. (2005). Z. Anorg. Allg. Chem.631, 592–595.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stein, P., Dickson, M. K. & Roundhill, D. M. (1983). J. Am. Chem. Soc.105, 3489–3494.
  • Steiner, T. (2002). Angew. Chem.114, 50–81.
  • Thauern, H. & Glaum, R. (2004). Z. Anorg. Allg. Chem.630, 2463–2467.
  • Wellmann, B. & Liebau, F. (1981). J. Less Common Met.77, 31–39.
  • Woollins, J. D. & Kelly, P. F. (1985). Coord. Chem. Rev.65, 115–140.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography