PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o612.
Published online 2009 February 25. doi:  10.1107/S1600536809006618
PMCID: PMC2968484

Neoaustin: a meroterpene produced by Penicillium sp.

Abstract

The title meroterpene neoaustin {systematic name: (1′S,2′R,3S,7′R,9′S,11′S,12′R)-11′-hydr­oxy-2,2,2′,9′,12′-penta­methyl-6′,15′-dimethyl­ene-2,6-dihydro-13′-oxaspiro­[pyran-3,5′-tetra­cyclo­[7.5.1.01,11.02,7]penta­deca­ne]-6,10′,14′-trione}, C25H30O6, comprises five rings, three six-membered and two five-membered. The absolute configuration was established based on [αD] = +166.91° (c 1.21, CH2Cl2). In the crystal, the mol­ecules are connected into a supra­molecular helical chain via O—H(...)O hydrogen bonds reinforced by C—H(...)O contacts.

Related literature

For related literature, see: dos Santos & Rodrigues-Fo (2002 [triangle], 2003 [triangle]); Maganhi et al. 2009 [triangle]. For ring conformation analysis, see: Cremer & Pople (1975 [triangle]); Iulek & Zukerman-Schpector (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o612-scheme1.jpg

Experimental

Crystal data

  • C25H30O6
  • M r = 426.49
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o612-efi1.jpg
  • a = 11.2152 (4) Å
  • b = 13.2870 (5) Å
  • c = 14.3914 (7) Å
  • V = 2144.55 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 290 K
  • 0.49 × 0.39 × 0.21 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: none
  • 18157 measured reflections
  • 2622 independent reflections
  • 2453 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.106
  • S = 1.07
  • 2622 reflections
  • 286 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: APEX2, COSMO and BIS (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PARST (Nardelli, 1995 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006618/tk2374sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006618/tk2374Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank FAPESP, CNPq and CAPES for financial support. Publication costs were met by FAPESP (Proc. 2008/02531–5). Professor R. A. Burrow of the Federal University of Santa Maria is gratefully acknowledged for helping with the collection of the intensity data.

supplementary crystallographic information

Comment

Endophytic fungi live in very intimate association with plant tissue and can produce compounds similar and sometimes identical to those produced by the host plant. Thus, fungi have been a rich source of important biologically active secondary metabolites, such as meroterpenoids, a class of complex metabolites derived from a mixed terpenoid-polyketide biosynthetic pathway. During an on-going study of substances produced by endophytic fungi, the title compound (I) was isolated and its structure postulated based on APCIMS (Atmospheric Pressure Chemical Ionization Mass Spectrometry) and a variety of NMR studies (dos Santos and Rodrigues-Fo, 2003). As suitable crystals were subsequently obtained, a crystal structure determination of (I) was undertaken, Fig. 1. The three six-membered rings are in different distorted conformations. Referring to the labels in Scheme 1, ring A is in a highly distorted half-boat conformation, ring B in a slightly distorted chair, and ring C is in a chair distorted towards a half-chair conformation. The five membered rings, D and E, are in a highly distorted envelope and a distorted twist conformation, respectively. The ring-puckering parameters (Cremer & Pople, 1975; Iulek & Zukerman-Schpector, 1997) in the order for A, B, C, D and E (when applicable) are: q2 = 0.434 (2), 0.044 (2), 0.161 (2), 0.562 (2), 0.284 (2) Å, q3 = 0.241 (2), 0.552 (2), -0.650 (2) Å, Q = 0.496 (2), 0.554 (2), 0.669 (2)°, [var phi]2 =-73.0 (3), -36 (3), 146.7 (7), -154.3 (3), 25.1 (5)°, and θ2 = 60.9 (3), 4.5 (2), 166.1 (2)°. The absolute configuration was established based on the [αD] = +166.914.97° (c 1.21, CH2Cl2) and the results reported in dos Santos and Rodrigues-Fo (2003). The molecules are linked via O-H···O hydrogen bonds, Fig. 2. which extend into a supramolecular helical chain which is reinforced via C-H···O contacts (Table 1).

Experimental

Compound (I), Neoaustin, was produced during cultivation of the fungus Penicillum sp over sterilized rice, and isolated from the methanol extract of the culture. Suitable crystals were obtained, by slow evaporation, from a mixture of dichloromethane, methanol and water.

Refinement

The H atoms were refined in the riding-model approximation with C—H = 0.93 - 0.98 Å and (0.82 Å for O—H), and with Uiso(H) = 1.5Ueq(methyl-C) or 1.2Ueq(remaining-C and O). In the absence of significant anomalous scattering effects, 1008 Friedel pairs were averaged in the final refinement.

Figures

Fig. 1.
The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 30% probability level (arbitrary spheres for the H atoms).
Fig. 2.
Detail of the hydrogen bonding in (I). Hydrogen bonds are shown as hollow dashed bonds. See Table 1 for symmetry operations.

Crystal data

C25H30O6F(000) = 912
Mr = 426.49Dx = 1.321 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 33851 reflections
a = 11.2152 (4) Åθ = 1.0–27.4°
b = 13.2870 (5) ŵ = 0.09 mm1
c = 14.3914 (7) ÅT = 290 K
V = 2144.55 (15) Å3Prism, colorless
Z = 40.49 × 0.39 × 0.21 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2453 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
graphiteθmax = 27.0°, θmin = 3.2°
[var phi] and ω scansh = −14→14
18157 measured reflectionsk = −15→16
2622 independent reflectionsl = −17→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0607P)2 + 0.3107P] where P = (Fo2 + 2Fc2)/3
2622 reflections(Δ/σ)max < 0.001
286 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1'0.32891 (19)0.90837 (15)0.67021 (13)0.0371 (4)
C2'0.45203 (19)0.93770 (16)0.71346 (13)0.0380 (4)
C20.74745 (19)0.93484 (17)0.92112 (15)0.0425 (5)
C3'0.5381 (2)0.84818 (18)0.71741 (15)0.0462 (5)
H3'A0.56130.83010.65460.055*
H3'B0.49730.79090.74440.055*
C4'0.6507 (2)0.8705 (2)0.77441 (16)0.0485 (5)
H4'A0.69800.92010.74150.058*
H4'B0.69770.80940.77880.058*
C40.5674 (2)0.82925 (17)0.93270 (16)0.0436 (5)
H40.51620.78340.90460.052*
C50.5873 (2)0.82231 (18)1.02291 (17)0.0493 (5)
H50.55320.76981.05640.059*
C5'0.62593 (18)0.90991 (16)0.87378 (14)0.0378 (4)
C60.66206 (19)0.89585 (17)1.07096 (15)0.0431 (5)
C6'0.53593 (18)0.99769 (15)0.86945 (13)0.0361 (4)
C7'0.42380 (18)0.97177 (15)0.81504 (13)0.0346 (4)
H7'0.38960.91270.84590.041*
C8'0.32623 (19)1.05317 (15)0.81811 (14)0.0375 (4)
H8'A0.35861.11560.79400.045*
H8'B0.30351.06470.88230.045*
C9'0.21293 (19)1.02470 (16)0.76119 (14)0.0385 (4)
C10'0.18022 (19)0.91858 (16)0.79257 (14)0.0405 (4)
C11'0.24352 (19)0.84332 (16)0.72965 (14)0.0402 (5)
C12'0.1604 (2)0.79507 (18)0.65534 (17)0.0523 (6)
H12'0.14810.72460.67310.063*
C14'0.3301 (2)0.85332 (18)0.57786 (15)0.0493 (5)
C15'0.2536 (2)1.00412 (16)0.66311 (14)0.0385 (4)
C160.8344 (2)0.8465 (2)0.9222 (2)0.0571 (6)
H16A0.79580.78850.94820.086*
H16B0.90270.86360.95930.086*
H16C0.85960.83190.85990.086*
C170.8129 (2)1.0257 (2)0.8822 (2)0.0573 (6)
H17A0.87381.04630.92500.086*
H17B0.75751.07990.87320.086*
H17C0.84871.00830.82380.086*
C180.5105 (2)1.0233 (2)0.65818 (16)0.0507 (5)
H18A0.51921.00330.59440.076*
H18B0.58751.03790.68400.076*
H18C0.46131.08230.66150.076*
C190.5471 (2)1.08493 (18)0.91461 (17)0.0516 (5)
H19A0.48541.13170.91330.062*
H19B0.61661.09900.94740.062*
C200.1151 (2)1.10233 (19)0.77492 (17)0.0498 (5)
H20A0.04731.08470.73750.075*
H20B0.14391.16740.75670.075*
H20C0.09221.10390.83920.075*
C210.0390 (3)0.8406 (2)0.6378 (2)0.0641 (7)
H21A−0.00150.80260.59060.096*
H21B0.04810.90900.61760.096*
H21C−0.00690.83910.69410.096*
C220.2290 (3)1.05608 (19)0.58737 (17)0.0557 (6)
H22A0.18111.11310.59100.067*
H22B0.25961.03570.53030.067*
O10.72595 (13)0.95988 (11)1.02022 (10)0.0418 (3)
O20.66745 (17)0.90141 (15)1.15505 (11)0.0577 (4)
O30.11959 (17)0.89618 (14)0.85870 (12)0.0583 (5)
O40.30164 (16)0.76719 (12)0.78090 (12)0.0516 (4)
H1O40.25200.72810.80190.062*
O50.23077 (19)0.79543 (15)0.57041 (12)0.0613 (5)
O60.4016 (2)0.85761 (16)0.51643 (11)0.0659 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C1'0.0436 (10)0.0378 (9)0.0299 (8)−0.0005 (9)0.0004 (9)0.0024 (7)
C2'0.0402 (10)0.0421 (10)0.0317 (9)0.0003 (9)0.0038 (8)−0.0007 (8)
C20.0336 (10)0.0503 (12)0.0435 (11)0.0003 (9)0.0020 (9)0.0028 (9)
C3'0.0464 (12)0.0499 (12)0.0422 (11)0.0090 (10)0.0022 (10)−0.0110 (9)
C4'0.0429 (11)0.0544 (12)0.0482 (12)0.0104 (10)0.0038 (10)−0.0104 (10)
C40.0383 (10)0.0390 (10)0.0535 (12)−0.0006 (9)−0.0035 (10)0.0038 (9)
C50.0471 (12)0.0477 (12)0.0531 (12)−0.0053 (10)−0.0009 (11)0.0148 (10)
C5'0.0334 (9)0.0408 (10)0.0393 (10)0.0018 (8)0.0004 (8)0.0023 (8)
C60.0386 (10)0.0461 (11)0.0445 (11)0.0052 (9)−0.0007 (9)0.0082 (9)
C6'0.0365 (9)0.0385 (10)0.0332 (9)0.0030 (8)0.0015 (8)0.0028 (7)
C7'0.0360 (9)0.0357 (9)0.0320 (9)0.0027 (8)0.0024 (7)0.0013 (7)
C8'0.0384 (10)0.0386 (10)0.0356 (9)0.0036 (9)0.0000 (8)−0.0013 (7)
C9'0.0373 (10)0.0412 (10)0.0369 (9)0.0012 (8)−0.0006 (8)0.0029 (8)
C10'0.0387 (10)0.0460 (11)0.0368 (10)−0.0025 (9)−0.0023 (9)0.0045 (9)
C11'0.0440 (11)0.0361 (10)0.0405 (10)−0.0009 (9)−0.0015 (9)0.0073 (8)
C12'0.0624 (14)0.0418 (11)0.0526 (12)−0.0092 (11)−0.0059 (12)−0.0023 (10)
C14'0.0629 (14)0.0479 (12)0.0372 (10)0.0058 (11)−0.0052 (11)−0.0036 (9)
C15'0.0431 (10)0.0366 (10)0.0358 (9)−0.0009 (8)−0.0033 (9)0.0025 (8)
C160.0382 (11)0.0655 (15)0.0676 (15)0.0106 (11)−0.0022 (12)−0.0038 (13)
C170.0458 (12)0.0654 (15)0.0607 (14)−0.0140 (12)0.0047 (12)0.0108 (12)
C180.0514 (12)0.0591 (13)0.0416 (11)−0.0083 (11)0.0096 (11)0.0053 (10)
C190.0544 (13)0.0462 (12)0.0543 (12)0.0071 (11)−0.0140 (11)−0.0064 (10)
C200.0426 (11)0.0535 (13)0.0533 (12)0.0095 (11)−0.0022 (11)0.0008 (10)
C210.0595 (15)0.0670 (16)0.0657 (16)−0.0123 (14)−0.0194 (13)−0.0019 (13)
C220.0767 (17)0.0485 (12)0.0418 (11)0.0053 (12)−0.0051 (12)0.0092 (10)
O10.0388 (7)0.0459 (8)0.0405 (7)−0.0034 (7)−0.0043 (6)0.0034 (6)
O20.0596 (10)0.0723 (11)0.0413 (8)0.0051 (10)0.0001 (8)0.0080 (8)
O30.0566 (10)0.0651 (11)0.0531 (9)−0.0069 (9)0.0156 (9)0.0095 (8)
O40.0579 (9)0.0399 (8)0.0569 (9)−0.0017 (7)−0.0022 (8)0.0156 (7)
O50.0738 (12)0.0619 (10)0.0482 (9)−0.0079 (10)−0.0056 (9)−0.0151 (8)
O60.0809 (13)0.0804 (13)0.0363 (8)0.0021 (11)0.0085 (9)−0.0096 (8)

Geometric parameters (Å, °)

C1'—C14'1.517 (3)C9'—C201.519 (3)
C1'—C15'1.530 (3)C9'—C10'1.525 (3)
C1'—C11'1.548 (3)C10'—O31.207 (3)
C1'—C2'1.564 (3)C10'—C11'1.524 (3)
C2'—C3'1.533 (3)C11'—O41.411 (3)
C2'—C181.535 (3)C11'—C12'1.557 (3)
C2'—C7'1.563 (3)C12'—O51.455 (3)
C2—O11.484 (3)C12'—C211.511 (4)
C2—C171.520 (3)C12'—H12'0.9800
C2—C161.526 (3)C14'—O61.195 (3)
C2—C5'1.559 (3)C14'—O51.358 (3)
C3'—C4'1.534 (3)C15'—C221.319 (3)
C3'—H3'A0.9700C16—H16A0.9600
C3'—H3'B0.9700C16—H16B0.9600
C4'—C5'1.548 (3)C16—H16C0.9600
C4'—H4'A0.9700C17—H17A0.9600
C4'—H4'B0.9700C17—H17B0.9600
C4—C51.321 (3)C17—H17C0.9600
C4—C5'1.516 (3)C18—H18A0.9600
C4—H40.9300C18—H18B0.9600
C5—C61.461 (3)C18—H18C0.9600
C5—H50.9300C19—H19A0.9300
C5'—C6'1.544 (3)C19—H19B0.9300
C6—O21.214 (3)C20—H20A0.9600
C6—O11.331 (3)C20—H20B0.9600
C6'—C191.335 (3)C20—H20C0.9600
C6'—C7'1.521 (3)C21—H21A0.9600
C7'—C8'1.539 (3)C21—H21B0.9600
C7'—H7'0.9800C21—H21C0.9600
C8'—C9'1.558 (3)C22—H22A0.9300
C8'—H8'A0.9700C22—H22B0.9300
C8'—H8'B0.9700O4—H1O40.8200
C9'—C15'1.508 (3)
C14'—C1'—C15'110.33 (17)C15'—C9'—C8'106.81 (17)
C14'—C1'—C11'102.75 (18)C20—C9'—C8'110.84 (17)
C15'—C1'—C11'99.19 (16)C10'—C9'—C8'105.36 (16)
C14'—C1'—C2'117.43 (19)O3—C10'—C11'124.7 (2)
C15'—C1'—C2'107.85 (16)O3—C10'—C9'126.7 (2)
C11'—C1'—C2'117.74 (16)C11'—C10'—C9'108.57 (16)
C3'—C2'—C18108.96 (18)O4—C11'—C10'112.01 (17)
C3'—C2'—C7'108.52 (16)O4—C11'—C1'113.78 (18)
C18—C2'—C7'110.90 (17)C10'—C11'—C1'104.48 (16)
C3'—C2'—C1'112.18 (17)O4—C11'—C12'109.90 (18)
C18—C2'—C1'110.82 (17)C10'—C11'—C12'113.54 (18)
C7'—C2'—C1'105.40 (16)C1'—C11'—C12'102.76 (17)
O1—C2—C17104.74 (19)O5—C12'—C21110.3 (2)
O1—C2—C16105.43 (18)O5—C12'—C11'104.53 (18)
C17—C2—C16107.8 (2)C21—C12'—C11'119.3 (2)
O1—C2—C5'108.99 (16)O5—C12'—H12'107.4
C17—C2—C5'115.45 (19)C21—C12'—H12'107.4
C16—C2—C5'113.58 (19)C11'—C12'—H12'107.4
C2'—C3'—C4'112.83 (18)O6—C14'—O5121.3 (2)
C2'—C3'—H3'A109.0O6—C14'—C1'129.2 (2)
C4'—C3'—H3'A109.0O5—C14'—C1'109.5 (2)
C2'—C3'—H3'B109.0C22—C15'—C9'127.9 (2)
C4'—C3'—H3'B109.0C22—C15'—C1'127.3 (2)
H3'A—C3'—H3'B107.8C9'—C15'—C1'104.78 (16)
C3'—C4'—C5'114.33 (18)C2—C16—H16A109.5
C3'—C4'—H4'A108.7C2—C16—H16B109.5
C5'—C4'—H4'A108.7H16A—C16—H16B109.5
C3'—C4'—H4'B108.7C2—C16—H16C109.5
C5'—C4'—H4'B108.7H16A—C16—H16C109.5
H4'A—C4'—H4'B107.6H16B—C16—H16C109.5
C5—C4—C5'121.8 (2)C2—C17—H17A109.5
C5—C4—H4119.1C2—C17—H17B109.5
C5'—C4—H4119.1H17A—C17—H17B109.5
C4—C5—C6121.0 (2)C2—C17—H17C109.5
C4—C5—H5119.5H17A—C17—H17C109.5
C6—C5—H5119.5H17B—C17—H17C109.5
C4—C5'—C6'105.89 (16)C2'—C18—H18A109.5
C4—C5'—C4'110.80 (19)C2'—C18—H18B109.5
C6'—C5'—C4'109.60 (16)H18A—C18—H18B109.5
C4—C5'—C2106.50 (17)C2'—C18—H18C109.5
C6'—C5'—C2115.38 (18)H18A—C18—H18C109.5
C4'—C5'—C2108.59 (17)H18B—C18—H18C109.5
O2—C6—O1118.8 (2)C6'—C19—H19A120.0
O2—C6—C5122.7 (2)C6'—C19—H19B120.0
O1—C6—C5118.5 (2)H19A—C19—H19B120.0
C19—C6'—C7'121.66 (19)C9'—C20—H20A109.5
C19—C6'—C5'125.1 (2)C9'—C20—H20B109.5
C7'—C6'—C5'112.97 (16)H20A—C20—H20B109.5
C6'—C7'—C8'114.45 (16)C9'—C20—H20C109.5
C6'—C7'—C2'112.31 (16)H20A—C20—H20C109.5
C8'—C7'—C2'111.99 (15)H20B—C20—H20C109.5
C6'—C7'—H7'105.8C12'—C21—H21A109.5
C8'—C7'—H7'105.8C12'—C21—H21B109.5
C2'—C7'—H7'105.8H21A—C21—H21B109.5
C7'—C8'—C9'113.20 (16)C12'—C21—H21C109.5
C7'—C8'—H8'A108.9H21A—C21—H21C109.5
C9'—C8'—H8'A108.9H21B—C21—H21C109.5
C7'—C8'—H8'B108.9C15'—C22—H22A120.0
C9'—C8'—H8'B108.9C15'—C22—H22B120.0
H8'A—C8'—H8'B107.8H22A—C22—H22B120.0
C15'—C9'—C20117.60 (18)C6—O1—C2118.14 (18)
C15'—C9'—C10'100.50 (17)C11'—O4—H1O4109.5
C20—C9'—C10'114.55 (18)C14'—O5—C12'112.37 (17)
C14'—C1'—C2'—C3'−50.6 (2)C20—C9'—C10'—O3−36.0 (3)
C15'—C1'—C2'—C3'−175.97 (16)C8'—C9'—C10'—O386.1 (3)
C11'—C1'—C2'—C3'73.0 (2)C15'—C9'—C10'—C11'20.4 (2)
C14'—C1'—C2'—C1871.4 (2)C20—C9'—C10'—C11'147.45 (18)
C15'—C1'—C2'—C18−53.9 (2)C8'—C9'—C10'—C11'−90.46 (18)
C11'—C1'—C2'—C18−164.97 (19)O3—C10'—C11'—O4−44.7 (3)
C14'—C1'—C2'—C7'−168.55 (17)C9'—C10'—C11'—O4131.88 (18)
C15'—C1'—C2'—C7'66.12 (19)O3—C10'—C11'—C1'−168.3 (2)
C11'—C1'—C2'—C7'−44.9 (2)C9'—C10'—C11'—C1'8.3 (2)
C18—C2'—C3'—C4'66.8 (2)O3—C10'—C11'—C12'80.5 (3)
C7'—C2'—C3'—C4'−54.1 (2)C9'—C10'—C11'—C12'−102.9 (2)
C1'—C2'—C3'—C4'−170.11 (17)C14'—C1'—C11'—O491.2 (2)
C2'—C3'—C4'—C5'53.4 (3)C15'—C1'—C11'—O4−155.36 (17)
C5'—C4—C5—C63.3 (4)C2'—C1'—C11'—O4−39.5 (3)
C5—C4—C5'—C6'−94.1 (3)C14'—C1'—C11'—C10'−146.31 (17)
C5—C4—C5'—C4'147.1 (2)C15'—C1'—C11'—C10'−32.90 (19)
C5—C4—C5'—C229.2 (3)C2'—C1'—C11'—C10'83.0 (2)
C3'—C4'—C5'—C466.5 (2)C14'—C1'—C11'—C12'−27.5 (2)
C3'—C4'—C5'—C6'−50.0 (3)C15'—C1'—C11'—C12'85.88 (19)
C3'—C4'—C5'—C2−176.87 (19)C2'—C1'—C11'—C12'−158.27 (17)
O1—C2—C5'—C4−53.3 (2)O4—C11'—C12'—O5−96.7 (2)
C17—C2—C5'—C4−170.8 (2)C10'—C11'—C12'—O5137.02 (18)
C16—C2—C5'—C463.9 (2)C1'—C11'—C12'—O524.8 (2)
O1—C2—C5'—C6'63.9 (2)O4—C11'—C12'—C21139.5 (2)
C17—C2—C5'—C6'−53.6 (3)C10'—C11'—C12'—C2113.2 (3)
C16—C2—C5'—C6'−178.92 (18)C1'—C11'—C12'—C21−99.0 (2)
O1—C2—C5'—C4'−172.67 (17)C15'—C1'—C14'—O694.9 (3)
C17—C2—C5'—C4'69.8 (3)C11'—C1'—C14'—O6−160.1 (3)
C16—C2—C5'—C4'−55.5 (2)C2'—C1'—C14'—O6−29.2 (4)
C4—C5—C6—O2168.2 (2)C15'—C1'—C14'—O5−83.3 (2)
C4—C5—C6—O1−11.2 (3)C11'—C1'—C14'—O521.7 (2)
C4—C5'—C6'—C19106.6 (2)C2'—C1'—C14'—O5152.63 (18)
C4'—C5'—C6'—C19−133.8 (2)C20—C9'—C15'—C2211.9 (4)
C2—C5'—C6'—C19−10.9 (3)C10'—C9'—C15'—C22136.9 (3)
C4—C5'—C6'—C7'−67.6 (2)C8'—C9'—C15'—C22−113.4 (3)
C4'—C5'—C6'—C7'51.9 (2)C20—C9'—C15'—C1'−167.42 (19)
C2—C5'—C6'—C7'174.84 (16)C10'—C9'—C15'—C1'−42.4 (2)
C19—C6'—C7'—C8'−0.8 (3)C8'—C9'—C15'—C1'67.3 (2)
C5'—C6'—C7'—C8'173.68 (16)C14'—C1'—C15'—C22−24.3 (3)
C19—C6'—C7'—C2'128.4 (2)C11'—C1'—C15'—C22−131.7 (3)
C5'—C6'—C7'—C2'−57.2 (2)C2'—C1'—C15'—C22105.1 (3)
C3'—C2'—C7'—C6'56.4 (2)C14'—C1'—C15'—C9'154.94 (19)
C18—C2'—C7'—C6'−63.2 (2)C11'—C1'—C15'—C9'47.58 (19)
C1'—C2'—C7'—C6'176.80 (16)C2'—C1'—C15'—C9'−75.61 (19)
C3'—C2'—C7'—C8'−173.15 (17)O2—C6—O1—C2162.3 (2)
C18—C2'—C7'—C8'67.2 (2)C5—C6—O1—C2−18.3 (3)
C1'—C2'—C7'—C8'−52.8 (2)C17—C2—O1—C6175.49 (19)
C6'—C7'—C8'—C9'179.61 (16)C16—C2—O1—C6−70.9 (2)
C2'—C7'—C8'—C9'50.3 (2)C5'—C2—O1—C651.4 (2)
C7'—C8'—C9'—C15'−56.7 (2)O6—C14'—O5—C12'175.7 (2)
C7'—C8'—C9'—C20174.05 (17)C1'—C14'—O5—C12'−6.0 (3)
C7'—C8'—C9'—C10'49.6 (2)C21—C12'—O5—C14'117.0 (2)
C15'—C9'—C10'—O3−163.1 (2)C11'—C12'—O5—C14'−12.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H1O4···O2i0.822.062.852 (3)162
C5—H5···O3ii0.932.633.386 (3)139

Symmetry codes: (i) x−1/2, −y+3/2, −z+2; (ii) x+1/2, −y+3/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2374).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bruker (2006). APEX2, COSMO, BIS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Iulek, J. & Zukerman-Schpector, J. (1997). Qui. Nova, 20, 433–434.
  • Maganhi, S. H., Fill, T. P., Rodrigues-Fo, E., Caracelli, I. & Zukerman-Schpector, J. (2009). Acta Cryst. E65, o221. [PMC free article] [PubMed]
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Santos, R. M. G. dos & Rodrigues-Fo, E. (2002). Phytochemistry, 61, 907–912. [PubMed]
  • Santos, R. M. G. dos & Rodrigues-Fo, E. (2003). J. Braz. Chem. Soc.14, 722–727.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography