PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o513.
Published online 2009 February 11. doi:  10.1107/S1600536809003912
PMCID: PMC2968479

2-Bromo-4-chloro-6-[(E)-p-tolyl­imino­meth­yl]phenol

Abstract

The mol­ecule of the title compound, C14H11BrClNO, displays an E configuration with respect to the imine C=N double bond. The two aromatic rings are essentially coplanar, forming a dihedral angle of 7.9 (2)°. An intra­molecular O—H(...)N hydrogen bond stabilizes the crystal structure.

Related literature

For the role of Schiff base ligands in catalysis and electron transfer in living organisms, see: Ueno et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o513-scheme1.jpg

Experimental

Crystal data

  • C14H11BrClNO
  • M r = 324.60
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o513-efi1.jpg
  • a = 8.1354 (14) Å
  • b = 8.6844 (17) Å
  • c = 11.3740 (18) Å
  • α = 76.040 (2)°
  • β = 73.652 (12)°
  • γ = 62.458 (12)°
  • V = 677.9 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.22 mm−1
  • T = 298 (2) K
  • 0.43 × 0.18 × 0.09 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Siemens, 1996 [triangle]) T min = 0.332, T max = 0.745
  • 3500 measured reflections
  • 2351 independent reflections
  • 1412 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.129
  • S = 1.00
  • 2351 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003912/rz2287sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003912/rz2287Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author gratefully acknowledges support from a research project (No. 08JZ09) of the Phytochemistry Key Laboratory of Shaanxi Province.

supplementary crystallographic information

Comment

Recently, there has been a growing interest in Schiff base ligands because of their applications, such as catalysts and non-linear optical materials. In recent years, they were found to play an important role in the catalysis and electron transfer of the living organisms (Ueno et al., 2006). This stimulated our interest in this field. As an extension of the work on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here.

The molecular structure and crystal packing of the title compound are illustrated in Figure 1 and 2, respectively. Bond lengths and angles are not unusual, with the C1═N1 bond distance (1.263 (5) Å) slightly shorter than a normal C═N. The molecule is essentially planar, the maximum deviation from the planarity being 0.167 (6) Å for atom C10. The dihedral angle between the two aromatic rings is 7.9 (2) °. An intramolecular O—H···N hydrogen bond (Table 1) stabilizes the crystal structure.

Experimental

3-Bromo-5-chlorosalicylaldehyde (0.1 mmol, 23.6 mg) and p-toluidine (0.1 mmol, 10.7 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 10 min and then filtered. After allowing the filtrate to stand in air for 3 d, yellow block-shaped crystals of the title compound suitable for X-ray analysis were formed by slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 54%).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93-0.96 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, O) for methyl and hydroxy H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii. The dashed line represents a hydrogen bond.
Fig. 2.
The crystal packing of the title compound viewed along the b axis.

Crystal data

C14H11BrClNOZ = 2
Mr = 324.60F(000) = 324
Triclinic, P1Dx = 1.590 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1354 (14) ÅCell parameters from 1148 reflections
b = 8.6844 (17) Åθ = 2.7–24.9°
c = 11.3740 (18) ŵ = 3.22 mm1
α = 76.040 (2)°T = 298 K
β = 73.652 (12)°Block-shaped, yellow
γ = 62.458 (12)°0.43 × 0.18 × 0.09 mm
V = 677.9 (2) Å3

Data collection

Siemens SMART CCD area-detector diffractometer2351 independent reflections
Radiation source: fine-focus sealed tube1412 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Siemens, 1996)h = −9→9
Tmin = 0.332, Tmax = 0.745k = −6→10
3500 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.065P)2] where P = (Fo2 + 2Fc2)/3
2351 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.62666 (9)0.48664 (8)0.11313 (5)0.0881 (3)
Cl10.2620 (2)1.09756 (16)0.31821 (13)0.0714 (4)
O10.7924 (4)0.3591 (4)0.3427 (3)0.0554 (9)
H10.83670.32720.40540.083*
N10.8449 (5)0.3835 (5)0.5491 (3)0.0414 (9)
C10.7224 (6)0.5406 (6)0.5417 (4)0.0434 (11)
H1A0.69020.60500.60580.052*
C20.6298 (6)0.6243 (6)0.4356 (4)0.0381 (10)
C30.6708 (6)0.5270 (6)0.3398 (4)0.0387 (10)
C40.5770 (6)0.6130 (6)0.2422 (4)0.0439 (11)
C50.4522 (6)0.7843 (6)0.2351 (4)0.0457 (11)
H50.39160.83800.16830.055*
C60.4168 (6)0.8776 (6)0.3294 (4)0.0467 (11)
C70.5034 (6)0.7974 (6)0.4289 (4)0.0476 (11)
H70.47630.86080.49250.057*
C80.9370 (6)0.3016 (6)0.6518 (4)0.0416 (11)
C90.9271 (7)0.3898 (7)0.7423 (4)0.0553 (13)
H90.85520.51020.73940.066*
C101.0267 (7)0.2956 (8)0.8377 (4)0.0619 (14)
H101.02010.35490.89810.074*
C111.1339 (7)0.1177 (7)0.8446 (4)0.0541 (13)
C121.1407 (7)0.0343 (7)0.7539 (4)0.0604 (14)
H121.2122−0.08620.75710.072*
C131.0454 (6)0.1229 (6)0.6584 (4)0.0522 (12)
H131.05400.06230.59810.063*
C141.2405 (8)0.0205 (8)0.9481 (4)0.0813 (18)
H14A1.21690.10111.00210.122*
H14B1.3735−0.03360.91440.122*
H14C1.1990−0.06790.99380.122*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1111 (6)0.0784 (5)0.0686 (4)−0.0123 (4)−0.0436 (4)−0.0269 (3)
Cl10.0773 (9)0.0392 (7)0.0848 (9)−0.0057 (7)−0.0321 (8)−0.0064 (6)
O10.058 (2)0.0406 (19)0.0586 (19)−0.0026 (17)−0.0275 (16)−0.0109 (15)
N10.037 (2)0.042 (2)0.046 (2)−0.0165 (19)−0.0143 (17)0.0014 (17)
C10.047 (3)0.046 (3)0.042 (2)−0.023 (3)−0.010 (2)−0.005 (2)
C20.036 (2)0.041 (3)0.043 (2)−0.021 (2)−0.010 (2)−0.002 (2)
C30.033 (2)0.039 (3)0.046 (2)−0.015 (2)−0.011 (2)−0.004 (2)
C40.043 (3)0.047 (3)0.042 (2)−0.015 (2)−0.011 (2)−0.011 (2)
C50.042 (3)0.048 (3)0.048 (3)−0.020 (2)−0.017 (2)0.004 (2)
C60.045 (3)0.042 (3)0.053 (3)−0.020 (2)−0.015 (2)0.002 (2)
C70.051 (3)0.040 (3)0.055 (3)−0.018 (2)−0.015 (2)−0.009 (2)
C80.034 (2)0.052 (3)0.041 (2)−0.023 (2)−0.012 (2)0.004 (2)
C90.056 (3)0.053 (3)0.055 (3)−0.019 (3)−0.024 (2)0.002 (2)
C100.062 (3)0.087 (4)0.052 (3)−0.040 (3)−0.019 (3)−0.008 (3)
C110.049 (3)0.068 (4)0.047 (3)−0.031 (3)−0.020 (2)0.016 (3)
C120.061 (3)0.047 (3)0.069 (3)−0.021 (3)−0.029 (3)0.016 (3)
C130.053 (3)0.048 (3)0.055 (3)−0.018 (3)−0.019 (2)−0.003 (2)
C140.080 (4)0.110 (5)0.061 (3)−0.052 (4)−0.037 (3)0.028 (3)

Geometric parameters (Å, °)

Br1—C41.885 (4)C7—H70.9300
Cl1—C61.732 (5)C8—C131.381 (6)
O1—C31.329 (5)C8—C91.389 (6)
O1—H10.8200C9—C101.399 (6)
N1—C11.263 (5)C9—H90.9300
N1—C81.425 (5)C10—C111.374 (7)
C1—C21.462 (5)C10—H100.9300
C1—H1A0.9300C11—C121.372 (7)
C2—C71.372 (6)C11—C141.506 (6)
C2—C31.411 (5)C12—C131.376 (6)
C3—C41.387 (5)C12—H120.9300
C4—C51.357 (6)C13—H130.9300
C5—C61.386 (6)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C71.370 (6)C14—H14C0.9600
C3—O1—H1109.5C13—C8—N1116.6 (4)
C1—N1—C8122.3 (4)C9—C8—N1124.4 (4)
N1—C1—C2121.9 (4)C8—C9—C10119.3 (5)
N1—C1—H1A119.0C8—C9—H9120.4
C2—C1—H1A119.0C10—C9—H9120.4
C7—C2—C3120.0 (4)C11—C10—C9121.8 (5)
C7—C2—C1120.0 (4)C11—C10—H10119.1
C3—C2—C1119.9 (4)C9—C10—H10119.1
O1—C3—C4120.8 (4)C12—C11—C10117.6 (4)
O1—C3—C2121.9 (4)C12—C11—C14122.0 (5)
C4—C3—C2117.3 (4)C10—C11—C14120.4 (5)
C5—C4—C3122.8 (4)C11—C12—C13122.2 (5)
C5—C4—Br1118.7 (3)C11—C12—H12118.9
C3—C4—Br1118.5 (3)C13—C12—H12118.9
C4—C5—C6118.7 (4)C12—C13—C8120.2 (5)
C4—C5—H5120.7C12—C13—H13119.9
C6—C5—H5120.7C8—C13—H13119.9
C7—C6—C5120.5 (4)C11—C14—H14A109.5
C7—C6—Cl1120.9 (4)C11—C14—H14B109.5
C5—C6—Cl1118.5 (3)H14A—C14—H14B109.5
C6—C7—C2120.6 (4)C11—C14—H14C109.5
C6—C7—H7119.7H14A—C14—H14C109.5
C2—C7—H7119.7H14B—C14—H14C109.5
C13—C8—C9119.0 (4)
C8—N1—C1—C2179.4 (4)Cl1—C6—C7—C2−178.2 (3)
N1—C1—C2—C7−177.3 (4)C3—C2—C7—C6−0.4 (6)
N1—C1—C2—C32.6 (6)C1—C2—C7—C6179.5 (4)
C7—C2—C3—O1179.9 (4)C1—N1—C8—C13170.2 (4)
C1—C2—C3—O10.1 (6)C1—N1—C8—C9−11.1 (6)
C7—C2—C3—C4−0.8 (6)C13—C8—C9—C10−0.2 (7)
C1—C2—C3—C4179.3 (4)N1—C8—C9—C10−178.8 (4)
O1—C3—C4—C5−179.8 (4)C8—C9—C10—C11−0.1 (7)
C2—C3—C4—C51.0 (6)C9—C10—C11—C120.1 (7)
O1—C3—C4—Br1−0.2 (6)C9—C10—C11—C14179.5 (4)
C2—C3—C4—Br1−179.5 (3)C10—C11—C12—C130.2 (7)
C3—C4—C5—C60.1 (7)C14—C11—C12—C13−179.2 (4)
Br1—C4—C5—C6−179.5 (3)C11—C12—C13—C8−0.5 (7)
C4—C5—C6—C7−1.3 (6)C9—C8—C13—C120.5 (7)
C4—C5—C6—Cl1178.4 (3)N1—C8—C13—C12179.2 (4)
C5—C6—C7—C21.4 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.574 (4)148

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2287).

References

  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART, SAINT and SADABS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Ueno, T., Yokoi, N., Unno, M., Matsui, T., Tokita, Y., Yamada, M., Ikeda-Saito, M., Nakajima, H. & Watanabe, Y. (2006). PNAS, 103, 9416–9421. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography