PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o572.
Published online 2009 February 21. doi:  10.1107/S1600536809005613
PMCID: PMC2968475

4-Benz­yloxy-3-methoxy­benzonitrile

Abstract

In the mol­ecule of the title compound, C15H13NO2, the aromatic rings are oriented at a dihedral angle of 81.65 (3)°. In the crystal structure, weak inter­molecular C—H(...)N hydrogen bonds link the mol­ecules into chains along the b axis.

Related literature

For the potential application of highly conjugated mol­ecules in nanoelectronics, see: Tour (2003 [triangle]) and in optoelectronics, see: Lind et al. (2004 [triangle]); Ornelas et al. (2005 [triangle], 2008 [triangle]). Terminal cyano groups provide the ability to coordinate to transition metal centres such as RuCp, see: Garcia et al. (2001 [triangle]); Ornelas et al. (2005 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o572-scheme1.jpg

Experimental

Crystal data

  • C15H13NO2
  • M r = 239.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o572-efi1.jpg
  • a = 14.9434 (12) Å
  • b = 9.5469 (8) Å
  • c = 8.8522 (7) Å
  • β = 102.663 (2)°
  • V = 1232.16 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 173 K
  • 0.32 × 0.25 × 0.23 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.864, T max = 0.980
  • 7286 measured reflections
  • 2983 independent reflections
  • 2499 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.114
  • S = 1.02
  • 2983 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2009 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005613/hk2626sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005613/hk2626Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the financial support of the Higher Education Commission, Islamabad, Pakistan.

supplementary crystallographic information

Comment

Schiff base compounds have attracted great attention for many years. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, photochromism and thermochromism. We report herein the crystal structure of the title compound.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C8-C13) are, of course, planar, and they are oriented at a dihedral angle of 81.65 (3)°.

In the crystal structure, weak intermolecular C-H···N hydrogen bonds (Table 1) link the molecules into chains along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure.

The preparation of highly conjugated molecules has been of great interest for their potential applications in fields such as nanoelectronics (Tour, 2003) or optoelectronics (Ornelas et al., 2005, 2008; Lind et al., 2004). Terminal cyano groups provide the ability to coordinate to transition metal centres such as RuCp (Cp = cyclopentadienyl); (Garcia et al., 2001; Ornelas et al., 2005) which should result in an increase of the physical properties such as the first molecular hyperpolarizability β, which is reported to rise with the coordination to cyclopentadienylruthenium type centres (Ornelas et al., 2005, 2008). As such the preparation of the π-conjugated title compound was intended for the preparation of dinuclear ruthenium complexes for nanoelectronic application.

Experimental

For the preparation of the title compound, 4-(benzyloxy)-3-methoxy benzenamine (2.29 g, 10 mmol) was treated with sodium nitrite (0.7 g, 10 mmol) in the presence of concentrated hydrochloric acid (10 ml) at 273-278 K. Aqueous cupreous cyanate solution (48%, 1.05 g, 10 mmol) was added into the resulting diazonnium salt (1.95 g, 8 mmol). The obtained title compound was separated and recrystallized in ethanol/THF mixture (yield; 65%, m.p. 411-412 K).

Refinement

H atoms were positioned geometrically, with C-H = 0.95, 0.99 and 0.98 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Fig. 3.
The formation of the title compound.

Crystal data

C15H13NO2F(000) = 504
Mr = 239.26Dx = 1.290 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7856 reflections
a = 14.9434 (12) Åθ = 2.6–28.3°
b = 9.5469 (8) ŵ = 0.09 mm1
c = 8.8522 (7) ÅT = 173 K
β = 102.663 (2)°Block, colorless
V = 1232.16 (17) Å30.32 × 0.25 × 0.23 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2983 independent reflections
Radiation source: fine-focus sealed tube2499 reflections with I > 2σ(I)
graphiteRint = 0.018
ω and [var phi] scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −17→19
Tmin = 0.864, Tmax = 0.980k = −11→12
7286 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0606P)2 + 0.2089P] where P = (Fo2 + 2Fc2)/3
2983 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.26381 (5)0.56473 (9)0.00751 (9)0.0409 (2)
O20.26362 (5)0.38653 (9)0.22449 (9)0.0423 (2)
N1−0.09205 (7)0.55876 (14)0.35630 (13)0.0545 (3)
C10.44027 (9)0.66914 (15)−0.09352 (15)0.0492 (3)
H1A0.44730.7296−0.00650.059*
C20.51719 (9)0.62309 (16)−0.14277 (16)0.0520 (3)
H2A0.57650.6523−0.08930.062*
C30.50825 (9)0.53599 (14)−0.26781 (15)0.0479 (3)
H3A0.56120.5033−0.30000.058*
C40.42195 (9)0.49571 (15)−0.34716 (16)0.0510 (3)
H4A0.41550.4364−0.43510.061*
C50.34464 (8)0.54158 (13)−0.29886 (14)0.0440 (3)
H5A0.28550.5137−0.35430.053*
C60.35295 (8)0.62749 (12)−0.17068 (13)0.0375 (2)
C70.26977 (8)0.66610 (13)−0.11153 (14)0.0425 (3)
H7A0.27600.7620−0.06800.051*
H7B0.21410.6623−0.19610.051*
C80.18984 (7)0.57131 (11)0.07225 (12)0.0339 (2)
C90.18915 (7)0.47256 (11)0.19135 (12)0.0328 (2)
C100.11690 (7)0.46987 (12)0.26518 (12)0.0343 (2)
H10A0.11660.40480.34620.041*
C110.04377 (7)0.56410 (12)0.21963 (12)0.0358 (2)
C120.04428 (8)0.66074 (13)0.10355 (13)0.0403 (3)
H12A−0.00550.72410.07360.048*
C130.11769 (8)0.66500 (13)0.03071 (13)0.0399 (3)
H13A0.11850.7324−0.04790.048*
C140.26552 (8)0.28301 (13)0.34102 (13)0.0411 (3)
H14A0.32200.22800.35340.062*
H14B0.21240.22100.31050.062*
H14C0.26350.32880.43930.062*
C15−0.03198 (7)0.55965 (13)0.29606 (13)0.0411 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0369 (4)0.0459 (5)0.0439 (4)0.0084 (3)0.0176 (3)0.0109 (3)
O20.0311 (4)0.0469 (5)0.0509 (5)0.0104 (3)0.0132 (3)0.0138 (4)
N10.0373 (5)0.0777 (8)0.0499 (6)0.0106 (5)0.0128 (4)0.0015 (5)
C10.0493 (7)0.0525 (7)0.0454 (6)−0.0055 (5)0.0094 (5)−0.0083 (5)
C20.0378 (6)0.0625 (8)0.0544 (7)−0.0090 (6)0.0071 (5)−0.0007 (6)
C30.0408 (6)0.0529 (7)0.0547 (7)−0.0047 (5)0.0204 (5)0.0033 (6)
C40.0481 (7)0.0573 (8)0.0528 (7)−0.0108 (6)0.0220 (6)−0.0127 (6)
C50.0383 (6)0.0496 (7)0.0463 (6)−0.0109 (5)0.0142 (5)−0.0036 (5)
C60.0408 (6)0.0350 (5)0.0392 (5)−0.0020 (4)0.0139 (4)0.0061 (4)
C70.0475 (6)0.0398 (6)0.0435 (6)0.0055 (5)0.0171 (5)0.0084 (5)
C80.0317 (5)0.0370 (5)0.0337 (5)0.0025 (4)0.0085 (4)−0.0009 (4)
C90.0263 (5)0.0351 (5)0.0362 (5)0.0026 (4)0.0054 (4)−0.0002 (4)
C100.0295 (5)0.0386 (5)0.0348 (5)0.0000 (4)0.0068 (4)−0.0003 (4)
C110.0293 (5)0.0427 (6)0.0354 (5)0.0022 (4)0.0072 (4)−0.0078 (4)
C120.0367 (5)0.0433 (6)0.0401 (5)0.0119 (4)0.0069 (4)−0.0025 (5)
C130.0421 (6)0.0411 (6)0.0373 (5)0.0090 (5)0.0106 (4)0.0032 (4)
C140.0366 (5)0.0411 (6)0.0431 (6)0.0037 (4)0.0034 (4)0.0065 (5)
C150.0320 (5)0.0523 (7)0.0385 (6)0.0063 (5)0.0067 (4)−0.0043 (5)

Geometric parameters (Å, °)

C1—C21.3872 (18)C8—C131.3870 (15)
C1—C61.3916 (17)C8—C91.4161 (15)
C1—H1A0.9500C9—O21.3624 (12)
C2—C31.3673 (19)C9—C101.3794 (14)
C2—H2A0.9500C10—C111.4046 (14)
C3—C41.3810 (18)C10—H10A0.9500
C3—H3A0.9500C11—C121.3822 (16)
C4—C51.3878 (17)C11—C151.4411 (14)
C4—H4A0.9500C12—C131.3897 (15)
C5—C61.3834 (16)C12—H12A0.9500
C5—H5A0.9500C13—H13A0.9500
C6—C71.4967 (15)C14—O21.4244 (13)
C7—O11.4478 (13)C14—H14A0.9800
C7—H7A0.9900C14—H14B0.9800
C7—H7B0.9900C14—H14C0.9800
C8—O11.3535 (12)C15—N11.1402 (15)
C8—O1—C7117.61 (8)O1—C8—C13125.25 (10)
C9—O2—C14117.38 (8)O1—C8—C9115.10 (9)
C2—C1—C6120.51 (12)C13—C8—C9119.65 (9)
C2—C1—H1A119.7O2—C9—C10125.03 (9)
C6—C1—H1A119.7O2—C9—C8115.01 (9)
C3—C2—C1120.43 (12)C10—C9—C8119.96 (9)
C3—C2—H2A119.8C9—C10—C11119.51 (10)
C1—C2—H2A119.8C9—C10—H10A120.2
C2—C3—C4119.72 (12)C11—C10—H10A120.2
C2—C3—H3A120.1C12—C11—C10120.68 (10)
C4—C3—H3A120.1C12—C11—C15120.10 (10)
C3—C4—C5120.20 (12)C10—C11—C15119.22 (10)
C3—C4—H4A119.9C11—C12—C13119.87 (10)
C5—C4—H4A119.9C11—C12—H12A120.1
C6—C5—C4120.58 (11)C13—C12—H12A120.1
C6—C5—H5A119.7C8—C13—C12120.33 (10)
C4—C5—H5A119.7C8—C13—H13A119.8
C5—C6—C1118.55 (11)C12—C13—H13A119.8
C5—C6—C7120.06 (10)O2—C14—H14A109.5
C1—C6—C7121.28 (11)O2—C14—H14B109.5
O1—C7—C6106.16 (9)H14A—C14—H14B109.5
O1—C7—H7A110.5O2—C14—H14C109.5
C6—C7—H7A110.5H14A—C14—H14C109.5
O1—C7—H7B110.5H14B—C14—H14C109.5
C6—C7—H7B110.5N1—C15—C11178.73 (13)
H7A—C7—H7B108.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14B···N1i0.982.583.5170 (17)160

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2626).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2002). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Garcia, M. H., Rodrigues, J. C., Dias, A. R., Piedade, M. F. M., Duarte, M. T., Robalo, M. P. & Lopes, N. (2001). J. Organomet. Chem.632, 133–144.
  • Lind, P., Lopes, C. O., berg, K. & Eliasson, B. (2004). Chem. Phys. Lett.387, 238–242.
  • Ornelas, C., Gandum, C., Mesquita, J., Rodrigues, J., Garcia, M. H., Lopes, N., Robalo, M. P., Na ttinen, K. & Rissanen, K. (2005). Inorg. Chim. Acta, 358, 2482–2488.
  • Ornelas, C., Ruiz, J., Rodrigues, J. & Astruc, D. (2008). Inorg. Chem. 47, 4421–4428. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tour, M. J. (2003). Molecular Electronics, Commercial Insights, Chemistry, Devices, Architecture and Programming Singapore: World Scientific Publishing Co Pte Ltd.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography