PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m290–m291.
Published online 2009 February 21. doi:  10.1107/S1600536809005595
PMCID: PMC2968472

Chlorido[2,15-dimethyl-3,7,10,14,20-penta­azabicyclo­[14.3.1]eicosa-1(20),2,14,16,18-penta­ene]manganese(II) perchlorate acetonitrile solvate

Abstract

The Mn ion in the title complex, [MnCl(C17H27N5)]ClO4·CH3CN, is six-coordinated with a geometry inter­mediate between penta­gonal pyramidal and heavily distorted octa­hedral. In the macrocycle, the pyridinium ring makes a large dihedral angle of 63.70 (9)° with the best plane through the remaining four N atoms. This feature is common for 17-membered N5 rings, in contrast to their 16- and 15-membered analogues which often form planar N5 systems. In the crystal, N—H(...)O and C—H(...)O interactions help to establish the packing. The perchlorate counter-ion is rotationally disordered around the chlorine centre, with occupation factors of 0.74 (1) and 0.26 (1).

Related literature

For manganese(II) metalloproteins and penta­aza macrocyclic complexes, see, for example: Riley (1999 [triangle]); Aston et al. (2001 [triangle]); Patroniak et al. (2004 [triangle]); Radecka-Paryzek et al. (2005 [triangle]); Isobe et al. (2005 [triangle]); Grabolle et al. (2006 [triangle]). For the crystal structures of similar 17-membered macrocycles, see: Drew et al. (1977 [triangle], 1979 [triangle]); Nelson et al. (1977 [triangle]); Drew & Nelson (1979 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m290-scheme1.jpg

Experimental

Crystal data

  • [MnCl(C17H27N5)]ClO4·C2H3N
  • M r = 532.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m290-efi1.jpg
  • a = 10.0583 (7) Å
  • b = 10.9118 (7) Å
  • c = 11.9591 (8) Å
  • α = 89.492 (5)°
  • β = 70.195 (6)°
  • γ = 84.093 (5)°
  • V = 1227.89 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.79 mm−1
  • T = 293 K
  • 0.4 × 0.2 × 0.1 mm

Data collection

  • Kuma KM-4 CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis CCD; Oxford Diffraction, 2007 [triangle]) T min = 0.842, T max = 0.924
  • 9805 measured reflections
  • 4301 independent reflections
  • 3212 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.132
  • S = 1.12
  • 4301 reflections
  • 329 parameters
  • 68 restraints
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005595/bg2236sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005595/bg2236Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Ministry of Science and Higher Education (grant No. N204 0317 33).

supplementary crystallographic information

Comment

The significance of metal complexes containing synthetic macrocyclic ligands is most obvious as it relates to naturally occurring macrocyclic systems such as the porphyrin core in hemoglobin or chlorophylls, the corrin in vitamin B12, cyclic polyether antibiotics. Many of the recent advances in the coordination chemistry of manganese have arisen from the desire to understand and mimic the mechanism of water oxidation and dioxygen evolution during photosynthesis catalyzed by manganese metalloproteins (Grabolle et al., 2006; Isobe et al., 2005). The manganese(II) pentaaza macrocyclic complexes have been considered as synzymes (low molecular weight catalysts which mimic a natural enzymatic function) for superoxide anion dismutation and activity with the goal to design and synthesis better human pharmaceutical agents (Riley, 1999; Aston et al., 2001). The effective method for the synthesis of macrocyclic complexes involves the coordination template effect. It consists of a metal ion being used to orient the reacting groups of linear substrates in the desired conformation for the condensation process which ultimately ends with ring closure (Radecka-Paryzek et al., 2005). We have recently reported the first examples of 16-membered macrocyclic lanthanide complexes which are able to activate molecular oxygen (Patroniak et al., 2004). Here we present the template action of manganese(II) in the synthesis of 17-membered pentaaza macrocycle. The crystal structure of the perchlorate salt of the resulting complex, chloro-(2,15-dimethyl-3,7,10,14,20-pentaazabicyclo-[14.3.1]eicosa-1(20),2,14,16,18-pentaene)-manganese(ii), 1, which crystallizes as the acetonitrile solvate, reveals that this metal ion which has no crystal-field stabilization energy in the high-spin state, can be accommodated by the particular stereochemical constraints enforced by the template process and adopt rare coordination geometry.

The N5-system in the 17-membered quinquedentate macrocyclic ligand does not form a plane, as it is often a case for 15- and 16-membered analogues (e.g. Patroniak et al., 2004). Four non-pyridine nitrogen atoms N3, N7, N10 and N14 are approximately coplanar - however even for these four atoms the maximum deviation from the least-squares plane is as high as 0.207 (2) Å - and the pyridine nitrogen N20 is 1.369 (3)Å out of this plane (Fig. 1). The pyridine ring makes a dihedral angle of 63.70 (9)° with the mean plane of the remaining N4-system; a similar value was found in the thiocyanato-lead complex (63.1°, Drew & Nelson, 1979), while it was smaller, but still significant, in other complexes: 48.8° for bromo-mercury (Drew et al., 1979), 49.7° for bromo-cadmium (Drew et al., 1979), and 41.8° for bis-isothiocyanato-manganese (Drew et al., 1977).

This non-planar disposition of five nitrogen atoms results also in an uncommon coordination of the Mn ion, which can be described as intermediate between a heavily distorted pentagonal pyramid (with the Cl atom at the apex and the N5 system as the base) and a distorted octahedron (cf. Table 1).

The perchlorate counterions are disordered over two positions with site occcupation factors of 0.74 (1) and 0.26 (1).

Through very weak interactions between cation and anions (See Table 2 for the most relevant ones), a centrosymmetric tetramer is formed around the cell centre, which appears as the building block on which the crystal architecture is based. Two solvent - acetonitrile molecules join to these tetramers by means of a rather linear C—H···O hydrogen bond. These cation-anion groups further organize into columns along the [001] direction, probably through second order contacts involving the Chlorine atoms (H···Cl ~2.90Å) which might impose some directionality to the main driving force of the crystal packing, the coulombic interaction between charged fragments.

Experimental

To a mixture of MnCl2.4H2O (0.065 g, 0.32 mmol) and Mn(ClO4)2. 6H2O (0.059 g, 0.16 mmol) in methanol (5 ml), 4,7-diazadecane-1,10-diamine (0.090 ml, 0.48 mmol) in methanol (5 ml) and 1,2-diacetylpyridine (0.081 g, 0.048 mmol) in methanol (5 ml) was added dropwise with stirring. The reaction was carried out for 24 h under reflux at argon atmosphere. The reaction mixture was evaporated to dryness and the remaining solid dissolved in boiling acetonitrile (15 ml), filtered under gravity, and left to stand overnight. Crystals suitable for X-ray diffraction analysis were formed.

ESI-MS m/z (%) = 171 (100 {[MnL2]}2+);377 (33 {[MnL2](Cl)}+); 441 (39 {[MnL2](ClO4)}+).

Elemental analysis calculated for [MnL2Cl](ClO4).6H2O: C, 32.83; H, 6.37; N,11.96; found: C, 33.29; H, 4.72; N, 6.7.

Refinement

Hydrogen atoms were located geometrically and refined in the 'riding model', with Uiso's set at 1.2 (1.5 for methyl groups) times Ueq's of their appropriate carrier atoms. Weak restraints were applied to both the geometry (DFIX for Cl—O bond lengths and O···O 1,3-distances) and displacement parameters (ISOR) of O atoms from the disordered perchlorate group.

Figures

Fig. 1.
Anisotropic displacement ellipsoid representation (at the 50% probability level) of the asymmetric unit content. Only the larger fraction of the disordered perchlorate is shown.

Crystal data

[MnCl(C17H27N5)]ClO4·C2H3NZ = 2
Mr = 532.33F(000) = 554
Triclinic, P1Dx = 1.440 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0583 (7) ÅCell parameters from 5931 reflections
b = 10.9118 (7) Åθ = 3–24°
c = 11.9591 (8) ŵ = 0.79 mm1
α = 89.492 (5)°T = 293 K
β = 70.195 (6)°Block, colourless
γ = 84.093 (5)°0.4 × 0.2 × 0.1 mm
V = 1227.89 (14) Å3

Data collection

Kuma KM-4 CCD diffractometer4301 independent reflections
Radiation source: fine-focus sealed tube3212 reflections with I > 2σ(I)
graphiteRint = 0.018
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis CCD; Oxford Diffraction, 2007)h = −11→8
Tmin = 0.842, Tmax = 0.924k = −12→12
9805 measured reflectionsl = −14→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.08P)2] where P = (Fo2 + 2Fc2)/3
4301 reflections(Δ/σ)max < 0.001
329 parametersΔρmax = 0.43 e Å3
68 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mn10.44426 (5)0.28963 (4)0.20642 (4)0.04702 (19)
Cl10.31564 (10)0.17792 (9)0.11320 (8)0.0692 (3)
C10.7488 (3)0.3700 (3)0.1391 (2)0.0476 (7)
C20.7747 (3)0.2331 (3)0.1285 (3)0.0544 (8)
C210.9208 (4)0.1739 (4)0.1132 (4)0.0838 (12)
H21A0.92090.08590.11340.109*
H21B0.94920.20020.17740.109*
H21C0.98620.19760.03900.109*
N30.6681 (3)0.1794 (2)0.1317 (2)0.0579 (7)
C40.6780 (5)0.0432 (4)0.1191 (4)0.0882 (13)
H4A0.77500.01140.07380.106*
H4B0.61730.02150.07590.106*
C50.6331 (5)−0.0152 (3)0.2403 (5)0.0938 (14)
H5A0.6526−0.10400.22890.113*
H5B0.69100.01100.28420.113*
C60.4797 (5)0.0153 (4)0.3139 (5)0.0972 (15)
H6A0.4210−0.00440.26820.117*
H6B0.4571−0.03500.38380.117*
N70.4460 (3)0.1468 (3)0.3517 (3)0.0682 (8)
H70.51390.16550.38130.082*
C80.3099 (4)0.1695 (4)0.4485 (4)0.0905 (13)
H8A0.31150.11980.51580.109*
H8B0.23390.14680.42270.109*
C90.2845 (5)0.3013 (4)0.4839 (3)0.0799 (11)
H9A0.35990.32320.51090.096*
H9B0.19530.31670.54920.096*
N100.2796 (3)0.3788 (3)0.3822 (2)0.0589 (7)
H100.30470.45430.39330.071*
C110.1369 (3)0.3957 (4)0.3697 (3)0.0662 (9)
H11A0.06500.40350.44820.079*
H11B0.12340.32300.33040.079*
C120.1163 (3)0.5084 (4)0.2992 (3)0.0635 (9)
H12A0.13510.58000.33670.076*
H12B0.01750.52040.30450.076*
C130.2087 (3)0.5036 (4)0.1681 (3)0.0592 (9)
H13A0.18560.43690.12720.071*
H13B0.19040.58020.13150.071*
N140.3594 (2)0.4841 (2)0.1571 (2)0.0478 (6)
C150.4326 (3)0.5735 (3)0.1512 (2)0.0469 (7)
C220.3868 (4)0.7083 (3)0.1474 (3)0.0668 (10)
H22A0.29470.71860.13910.087*
H22B0.45400.74370.08100.087*
H22C0.38250.74870.21970.087*
C160.5821 (3)0.5369 (3)0.1479 (3)0.0476 (7)
C170.6801 (4)0.6185 (3)0.1400 (3)0.0631 (9)
H17A0.65590.70280.13800.076*
C180.8150 (4)0.5727 (4)0.1352 (3)0.0704 (10)
H18A0.88160.62630.13400.084*
C190.8505 (3)0.4478 (4)0.1321 (3)0.0654 (10)
H19A0.94230.41600.12540.078*
N200.6156 (2)0.4155 (2)0.1509 (2)0.0425 (5)
N23−0.0126 (5)0.8132 (4)0.1994 (4)0.1062 (13)
C240.0164 (4)0.8829 (4)0.2528 (4)0.0760 (11)
C250.0549 (6)0.9727 (4)0.3213 (5)0.1053 (16)
H2510.13201.01360.26990.137*
H2520.08370.93180.38210.137*
H253−0.02541.03220.35740.137*
Cl20.72849 (11)0.28375 (9)0.48084 (8)0.0727 (3)
O10.7114 (7)0.2002 (6)0.4036 (5)0.155 (3)0.744 (7)
O20.8302 (5)0.2290 (5)0.5320 (5)0.136 (2)0.744 (7)
O30.6031 (5)0.3181 (7)0.5761 (4)0.156 (3)0.744 (7)
O40.7887 (6)0.3879 (5)0.4240 (5)0.149 (3)0.744 (7)
O1A0.6571 (17)0.3333 (16)0.4029 (12)0.150 (8)0.256 (7)
O2A0.706 (2)0.1585 (7)0.491 (2)0.194 (10)0.256 (7)
O3A0.668 (2)0.3472 (18)0.5903 (10)0.202 (13)0.256 (7)
O4A0.8736 (8)0.297 (2)0.429 (2)0.45 (4)0.256 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0438 (3)0.0503 (3)0.0490 (3)−0.0094 (2)−0.0170 (2)−0.0083 (2)
Cl10.0697 (6)0.0756 (6)0.0717 (6)−0.0229 (5)−0.0314 (5)−0.0163 (5)
C10.0384 (15)0.068 (2)0.0364 (15)−0.0069 (14)−0.0123 (12)−0.0001 (14)
C20.0488 (18)0.070 (2)0.0444 (17)0.0035 (16)−0.0181 (14)−0.0054 (15)
C210.053 (2)0.102 (3)0.093 (3)0.014 (2)−0.027 (2)0.005 (2)
N30.0594 (17)0.0550 (16)0.0611 (17)0.0056 (13)−0.0254 (14)−0.0202 (13)
C40.096 (3)0.065 (2)0.113 (4)0.017 (2)−0.053 (3)−0.039 (2)
C50.119 (4)0.040 (2)0.138 (4)−0.003 (2)−0.065 (3)−0.007 (2)
C60.107 (4)0.053 (2)0.145 (4)−0.022 (2)−0.057 (3)0.013 (3)
N70.070 (2)0.0633 (18)0.078 (2)−0.0174 (15)−0.0311 (17)0.0106 (16)
C80.080 (3)0.098 (3)0.089 (3)−0.020 (3)−0.021 (2)0.037 (3)
C90.084 (3)0.098 (3)0.048 (2)−0.009 (2)−0.0101 (19)0.002 (2)
N100.0586 (16)0.0675 (18)0.0475 (15)−0.0065 (14)−0.0139 (13)−0.0032 (13)
C110.0507 (19)0.084 (3)0.053 (2)−0.0094 (18)−0.0022 (16)−0.0102 (18)
C120.0380 (17)0.090 (3)0.056 (2)0.0052 (17)−0.0099 (15)−0.0180 (18)
C130.0404 (16)0.081 (2)0.058 (2)0.0041 (16)−0.0216 (15)−0.0095 (17)
N140.0386 (13)0.0638 (17)0.0399 (13)0.0000 (12)−0.0133 (11)−0.0075 (12)
C150.0493 (17)0.0554 (18)0.0340 (15)−0.0048 (14)−0.0118 (13)−0.0024 (13)
C220.068 (2)0.056 (2)0.066 (2)0.0073 (17)−0.0138 (18)0.0016 (17)
C160.0473 (17)0.0570 (19)0.0406 (15)−0.0078 (14)−0.0169 (13)−0.0062 (13)
C170.067 (2)0.064 (2)0.062 (2)−0.0224 (18)−0.0226 (18)−0.0012 (17)
C180.060 (2)0.089 (3)0.074 (2)−0.035 (2)−0.0295 (19)−0.001 (2)
C190.0417 (18)0.099 (3)0.060 (2)−0.0172 (19)−0.0211 (16)0.005 (2)
N200.0366 (12)0.0502 (14)0.0414 (13)−0.0061 (11)−0.0134 (10)−0.0028 (11)
N230.105 (3)0.085 (3)0.138 (4)−0.012 (2)−0.052 (3)−0.015 (3)
C240.065 (2)0.062 (2)0.102 (3)−0.0037 (19)−0.031 (2)0.009 (2)
C250.130 (4)0.081 (3)0.125 (4)−0.022 (3)−0.066 (4)0.007 (3)
Cl20.0845 (7)0.0778 (6)0.0613 (6)−0.0233 (5)−0.0277 (5)−0.0020 (5)
O10.182 (5)0.162 (5)0.141 (5)−0.044 (4)−0.071 (4)−0.066 (4)
O20.143 (4)0.144 (4)0.146 (5)0.012 (3)−0.088 (4)0.017 (3)
O30.107 (4)0.252 (7)0.081 (3)0.034 (4)−0.012 (3)−0.019 (4)
O40.164 (5)0.132 (4)0.169 (5)−0.070 (4)−0.064 (4)0.062 (4)
O1A0.168 (11)0.172 (12)0.119 (9)−0.018 (8)−0.060 (8)0.029 (8)
O2A0.227 (14)0.160 (13)0.204 (14)−0.056 (9)−0.074 (10)0.006 (9)
O3A0.226 (16)0.211 (15)0.181 (15)−0.026 (10)−0.081 (10)−0.055 (9)
O4A0.44 (4)0.45 (4)0.46 (4)−0.054 (12)−0.142 (16)0.024 (11)

Geometric parameters (Å, °)

Mn1—N202.234 (2)C11—H11A0.9700
Mn1—N32.326 (3)C11—H11B0.9700
Mn1—N72.327 (3)C12—C131.526 (4)
Mn1—N102.336 (3)C12—H12A0.9700
Mn1—N142.350 (3)C12—H12B0.9700
Mn1—Cl12.3934 (9)C13—N141.469 (3)
C1—N201.341 (4)C13—H13A0.9700
C1—C191.376 (4)C13—H13B0.9700
C1—C21.489 (5)N14—C151.269 (4)
C2—N31.263 (4)C15—C221.500 (4)
C2—C211.496 (4)C15—C161.502 (4)
C21—H21A0.9600C22—H22A0.9600
C21—H21B0.9600C22—H22B0.9600
C21—H21C0.9600C22—H22C0.9600
N3—C41.485 (5)C16—N201.337 (4)
C4—C51.520 (6)C16—C171.374 (4)
C4—H4A0.9700C17—C181.379 (5)
C4—H4B0.9700C17—H17A0.9300
C5—C61.498 (6)C18—C191.370 (5)
C5—H5A0.9700C18—H18A0.9300
C5—H5B0.9700C19—H19A0.9300
C6—N71.478 (5)N23—C241.118 (5)
C6—H6A0.9700C24—C251.446 (7)
C6—H6B0.9700C25—H2510.9600
N7—C81.463 (5)C25—H2520.9600
N7—H70.9100C25—H2530.9600
C8—C91.475 (6)Cl2—O11.367 (3)
C8—H8A0.9700Cl2—O21.438 (3)
C8—H8B0.9700Cl2—O31.403 (4)
C9—N101.487 (4)Cl2—O41.403 (3)
C9—H9A0.9700Cl2—O1A1.429 (5)
C9—H9B0.9700Cl2—O2A1.406 (5)
N10—C111.485 (4)Cl2—O3A1.398 (5)
N10—H100.9100Cl2—O4A1.402 (5)
C11—C121.521 (5)
N20—Mn1—N368.62 (9)C9—N10—Mn1109.3 (2)
N20—Mn1—N7118.71 (9)C11—N10—H10108.4
N3—Mn1—N775.97 (10)C9—N10—H10108.4
N20—Mn1—N10105.07 (9)Mn1—N10—H10108.4
N3—Mn1—N10141.85 (9)N10—C11—C12113.0 (3)
N7—Mn1—N1075.11 (10)N10—C11—H11A109.0
N20—Mn1—N1468.58 (8)C12—C11—H11A109.0
N3—Mn1—N14130.50 (9)N10—C11—H11B109.0
N7—Mn1—N14148.65 (10)C12—C11—H11B109.0
N10—Mn1—N1473.60 (9)H11A—C11—H11B107.8
N20—Mn1—Cl1137.26 (7)C11—C12—C13115.8 (3)
N3—Mn1—Cl1100.45 (7)C11—C12—H12A108.3
N7—Mn1—Cl196.45 (8)C13—C12—H12A108.3
N10—Mn1—Cl1107.03 (7)C11—C12—H12B108.3
N14—Mn1—Cl194.43 (7)C13—C12—H12B108.3
N20—C1—C19120.6 (3)H12A—C12—H12B107.4
N20—C1—C2114.3 (3)N14—C13—C12109.6 (2)
C19—C1—C2125.1 (3)N14—C13—H13A109.7
N3—C2—C1114.9 (3)C12—C13—H13A109.7
N3—C2—C21127.0 (3)N14—C13—H13B109.7
C1—C2—C21118.2 (3)C12—C13—H13B109.7
C2—C21—H21A109.5H13A—C13—H13B108.2
C2—C21—H21B109.5C15—N14—C13121.8 (3)
H21A—C21—H21B109.5C15—N14—Mn1118.56 (19)
C2—C21—H21C109.5C13—N14—Mn1117.3 (2)
H21A—C21—H21C109.5N14—C15—C22127.6 (3)
H21B—C21—H21C109.5N14—C15—C16114.6 (3)
C2—N3—C4121.2 (3)C22—C15—C16117.7 (3)
C2—N3—Mn1118.2 (2)C15—C22—H22A109.5
C4—N3—Mn1118.7 (2)C15—C22—H22B109.5
N3—C4—C5110.8 (3)H22A—C22—H22B109.5
N3—C4—H4A109.5C15—C22—H22C109.5
C5—C4—H4A109.5H22A—C22—H22C109.5
N3—C4—H4B109.5H22B—C22—H22C109.5
C5—C4—H4B109.5N20—C16—C17121.2 (3)
H4A—C4—H4B108.1N20—C16—C15114.4 (3)
C6—C5—C4114.7 (4)C17—C16—C15124.4 (3)
C6—C5—H5A108.6C16—C17—C18118.7 (3)
C4—C5—H5A108.6C16—C17—H17A120.7
C6—C5—H5B108.6C18—C17—H17A120.7
C4—C5—H5B108.6C19—C18—C17119.7 (3)
H5A—C5—H5B107.6C19—C18—H18A120.2
N7—C6—C5112.2 (3)C17—C18—H18A120.2
N7—C6—H6A109.2C18—C19—C1119.3 (3)
C5—C6—H6A109.2C18—C19—H19A120.3
N7—C6—H6B109.2C1—C19—H19A120.3
C5—C6—H6B109.2C16—N20—C1120.3 (2)
H6A—C6—H6B107.9C16—N20—Mn1120.06 (18)
C8—N7—C6111.9 (3)C1—N20—Mn1118.8 (2)
C8—N7—Mn1107.3 (2)N23—C24—C25179.6 (6)
C6—N7—Mn1117.4 (3)C24—C25—H251109.5
C8—N7—H7106.6C24—C25—H252109.5
C6—N7—H7106.6H251—C25—H252109.5
Mn1—N7—H7106.6C24—C25—H253109.5
N7—C8—C9109.1 (3)H251—C25—H253109.5
N7—C8—H8A109.9H252—C25—H253109.5
C9—C8—H8A109.9O3A—Cl2—O4A112.0 (8)
N7—C8—H8B109.9O1—Cl2—O3113.0 (4)
C9—C8—H8B109.9O1—Cl2—O4112.7 (4)
H8A—C8—H8B108.3O3—Cl2—O4111.0 (4)
C8—C9—N10110.6 (3)O3A—Cl2—O2A111.6 (7)
C8—C9—H9A109.5O4A—Cl2—O2A110.8 (8)
N10—C9—H9A109.5O3A—Cl2—O1A108.0 (7)
C8—C9—H9B109.5O4A—Cl2—O1A108.5 (7)
N10—C9—H9B109.5O2A—Cl2—O1A105.7 (7)
H9A—C9—H9B108.1O1—Cl2—O2108.9 (4)
C11—N10—C9113.3 (3)O3—Cl2—O2106.4 (3)
C11—N10—Mn1109.01 (19)O4—Cl2—O2104.1 (3)
N20—C1—C2—N30.2 (4)C9—N10—C11—C12158.7 (3)
C19—C1—C2—N3−176.7 (3)Mn1—N10—C11—C12−79.3 (3)
N20—C1—C2—C21179.2 (3)N10—C11—C12—C1366.3 (4)
C19—C1—C2—C212.2 (5)C11—C12—C13—N14−57.5 (4)
C1—C2—N3—C4178.4 (3)C12—C13—N14—C15−92.3 (4)
C21—C2—N3—C4−0.5 (5)C12—C13—N14—Mn170.2 (3)
C1—C2—N3—Mn1−17.4 (4)N20—Mn1—N14—C15−16.4 (2)
C21—C2—N3—Mn1163.8 (3)N3—Mn1—N14—C15−48.2 (2)
N20—Mn1—N3—C219.7 (2)N7—Mn1—N14—C1594.0 (3)
N7—Mn1—N3—C2−109.3 (2)N10—Mn1—N14—C1597.6 (2)
N10—Mn1—N3—C2−67.6 (3)Cl1—Mn1—N14—C15−155.9 (2)
N14—Mn1—N3—C251.5 (3)N20—Mn1—N14—C13−179.5 (2)
Cl1—Mn1—N3—C2156.6 (2)N3—Mn1—N14—C13148.72 (19)
N20—Mn1—N3—C4−175.6 (3)N7—Mn1—N14—C13−69.2 (3)
N7—Mn1—N3—C455.3 (3)N10—Mn1—N14—C13−65.5 (2)
N10—Mn1—N3—C497.0 (3)Cl1—Mn1—N14—C1340.94 (19)
N14—Mn1—N3—C4−143.9 (2)C13—N14—C15—C22−3.5 (5)
Cl1—Mn1—N3—C4−38.8 (3)Mn1—N14—C15—C22−165.8 (2)
C2—N3—C4—C594.4 (4)C13—N14—C15—C16176.4 (2)
Mn1—N3—C4—C5−69.7 (4)Mn1—N14—C15—C1614.0 (3)
N3—C4—C5—C665.7 (5)N14—C15—C16—N200.5 (4)
C4—C5—C6—N7−67.4 (5)C22—C15—C16—N20−179.6 (3)
C5—C6—N7—C8−164.2 (4)N14—C15—C16—C17179.1 (3)
C5—C6—N7—Mn171.1 (4)C22—C15—C16—C17−1.0 (4)
N20—Mn1—N7—C8122.6 (3)N20—C16—C17—C18−0.1 (5)
N3—Mn1—N7—C8178.2 (3)C15—C16—C17—C18−178.6 (3)
N10—Mn1—N7—C823.4 (3)C16—C17—C18—C193.4 (5)
N14—Mn1—N7—C827.0 (4)C17—C18—C19—C1−2.7 (5)
Cl1—Mn1—N7—C8−82.6 (3)N20—C1—C19—C18−1.2 (5)
N20—Mn1—N7—C6−110.5 (3)C2—C1—C19—C18175.5 (3)
N3—Mn1—N7—C6−54.9 (3)C17—C16—N20—C1−3.9 (4)
N10—Mn1—N7—C6150.3 (3)C15—C16—N20—C1174.8 (2)
N14—Mn1—N7—C6153.9 (3)C17—C16—N20—Mn1165.5 (2)
Cl1—Mn1—N7—C644.3 (3)C15—C16—N20—Mn1−15.8 (3)
C6—N7—C8—C9178.6 (3)C19—C1—N20—C164.5 (4)
Mn1—N7—C8—C9−51.3 (4)C2—C1—N20—C16−172.5 (3)
N7—C8—C9—N1060.4 (4)C19—C1—N20—Mn1−165.0 (2)
C8—C9—N10—C1185.5 (4)C2—C1—N20—Mn117.9 (3)
C8—C9—N10—Mn1−36.3 (4)N3—Mn1—N20—C16171.1 (2)
N20—Mn1—N10—C11125.9 (2)N7—Mn1—N20—C16−129.6 (2)
N3—Mn1—N10—C11−159.6 (2)N10—Mn1—N20—C16−48.6 (2)
N7—Mn1—N10—C11−117.8 (2)N14—Mn1—N20—C1616.6 (2)
N14—Mn1—N10—C1164.2 (2)Cl1—Mn1—N20—C1689.0 (2)
Cl1—Mn1—N10—C11−25.5 (2)N3—Mn1—N20—C1−19.29 (19)
N20—Mn1—N10—C9−109.7 (2)N7—Mn1—N20—C140.0 (2)
N3—Mn1—N10—C9−35.3 (3)N10—Mn1—N20—C1121.0 (2)
N7—Mn1—N10—C96.6 (2)N14—Mn1—N20—C1−173.8 (2)
N14—Mn1—N10—C9−171.5 (2)Cl1—Mn1—N20—C1−101.4 (2)
Cl1—Mn1—N10—C998.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C25—H252···O2i0.962.273.168 (6)156
N7—H7···O10.912.163.050 (6)165
N10—H10···O3Ai0.912.233.13 (2)169

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2236).

References

  • Aston, A., Rath, N., Naik, A., Słomczynska, U., Shall, O. F. & Riley, D. P. (2001). Inorg. Chem.40, 1779–1789. [PubMed]
  • Drew, M. G. B., bin Othman, A. H., McFall, S. G., McIlroy, P. D. A. & Nelson, S. M. (1977). J. Chem. Soc. Dalton Trans. pp. 438–446.
  • Drew, M. G. B., McFall, S. G. & Nelson, S. M. (1979). J. Chem. Soc. Dalton Trans. pp. 575–581.
  • Drew, M. G. B. & Nelson, S. M. (1979). Acta Cryst. B35, 1594–1597.
  • Grabolle, M., Haumann, M., Müller, C., Liebisch, P. & Dau, H. (2006). J. Biol. Chem.281, 4580–4588. [PubMed]
  • Isobe, H., Shoji, M., Koizumi, K., Kitagawa, Y., Yamanaka, S., Kuramitsu, S. & Yamaguchi, K. (2005). Polyhedron, 24, 2767–2777.
  • Nelson, S. M., McFall, S. G., Drew, M. G. B., bin Othman, A. H. & Mason, N. B. (1977). J. Chem. Soc. Chem. Commun. pp. 167–168.
  • Oxford Diffraction (2007). CrystAlisCCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Patroniak, V., Kubicki, M., Mondry, A., Lisowski, J. & Radecka-Paryzek, W. (2004). Dalton Trans. pp. 3295–3304. [PubMed]
  • Radecka-Paryzek, W., Patroniak, V. & Lisowski, J. (2005). Coord. Chem. Rev.249, 2156–2175.
  • Riley, D. P. (1999). Chem. Rev.99, 2573–2587. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1989). Stereochemical Workstation Operation Manual Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography