PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o581.
Published online 2009 February 25. doi:  10.1107/S1600536809005790
PMCID: PMC2968457

3,3′-(p-Phenyl­ene)bis­(3,4-dihydro-2H-1,3-benzoxazine)

Abstract

Mol­ecules of the title compound, C22H20N2O2, are situated on crystallographic centres of symmetry. The oxazinane ring adopts a sofa conformation. Mol­ecules are linked into cyclic centrosymmetric dimers via C—H(...)O hydrogen bonds with the motif R 2 2(6). In addition to the C—H(...)O inter­actions, the crystal structure is also stabilized by C—H(...)π inter­actions.

Related literature

For related structures, see: Huerta et al. (2006 [triangle]). For the biological activity of bis-benzoxazine compounds, see: Billmann & Dorman (1963 [triangle]); Heinisch et al. (2002 [triangle]). For puckering and asymmetry parameters, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o581-scheme1.jpg

Experimental

Crystal data

  • C22H20N2O2
  • M r = 344.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o581-efi2.jpg
  • a = 9.191 (5) Å
  • b = 8.794 (4) Å
  • c = 11.317 (5) Å
  • β = 113.90 (3)°
  • V = 836.3 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.21 × 0.19 × 0.16 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.982, T max = 0.986
  • 13095 measured reflections
  • 3707 independent reflections
  • 2762 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.164
  • S = 1.02
  • 3707 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005790/fb2131sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005790/fb2131Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SR and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray data collection.

supplementary crystallographic information

Comment

Bis-benzoxazine compounds exhibit various biological activities including antibacterial ( i. a. tuberculostatic), antitumor, fungicidal and plant-growth regulative properties (Billmann & Dorman, 1963; Heinisch et al., 2002). Polyoxymethylene (paraformaldehyde) undegoes a bimolecular condensation with N,N-bis-(o-hydroxybenzyl)-ethylenediamine in benzene to form 1,2-bis-[3-(3,4-dihydro-1,3–2H-benzoxazino]-ethane, which shows bacteriostatic and fungistatic activities (Billmann & Dorman, 1963). Taking into consideration these aspects, and in order to obtain a detailed information on the molecular structure in the solid state, the X-ray structure determination of the title compound has been carried out.

The molecules are situated on the crystallographic centres of symmetry and therefore have symmetry 1 (Fig. 1). The bond lengths N1—C7, O1—C5 are normal and comparable to the corresponding values observed in the related structure of 1,4-bis(8-tert-butyl-6-methyl-4H-1,3-benzoxazin-3-yl)benzene (Huerta et al., 2006).

The oxazinane ring of the benzoxazine moiety adopts the sofa conformation, with the puckering parameters q2 and [var phi] (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δs (Nardelli et al., 1983) as follows: q2=0.3657 (11) Å, [var phi]=264.71 (17)°, Δs(N1)=21.40 (11).

In addition to the van der Waals interactions, the crystal packing is stabilized by C–H···O and C–H···π hydrogen bonds (Tab. 1) as well as by π–π-electron interactions. The atom C8 acts as a donor to the atom O1 of the neighbour molecule. This hydrogen bond is involved in a motif C11(10) forming an infinite chain along b axis. C11(10) projected on the axis b corresponds to the translational period along this axis. Simultaneously a pair of C8–H8A···O1 hydrogen bonds form a cyclic centrosymmetric dimer [R22(6)]. The π–π-electron interactions between the rings (C1\C2···C6) at x, y, z and 1-x, -y, -z with the centroid-centroid distances equal to 3.780 (2) Å are observed in the crystal structure.

Experimental

A mixture of 2-(4-[(2-hydroxybenzyl)amino]anilinomethyl)benzenol (0.005 mole) and methanal (0.010 mole) was irradiated under microwaves generated by IFB Microwave Oven (Frequency = 2450 MHz ~λ=122 mm; 480 W) for 4 to 6 minutes; the distance from the source to the sample was 15 cm. The progress of the reaction was monitored by a thin layer chromatography. After completion of reaction, ice-cold water (50 ml) was added to the reaction mixture and stirred. The title compound was extracted with chloroform, the combined organic layers were dried over anhydrous sodium sulfate and then the solvent was evaporated. The crude product was recrystallized in ethylacetate at room temperature. The elongated single cystals of the title compound of average length of 2 mm were grown.

Refinement

All the H atoms could be clearly discerned in the difference electron density map. Nevertheless the atoms were situated into the idealized positions and refined in the riding model approximation. The constraints: Caryl-H = 0.93 and Cmethylene-H = 0.97 Å. UisoH=1.2Ueq(Caryl/methylene).

Figures

Fig. 1.
View of the title molecule with the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level while the H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
The crystal structure showing the centrosymmetric hydrogen bond motif R22(6). For the sake of clarity, the H atoms not involved in the motif have been omitted. The atoms marked with an asterisk (*) are situated in the position (2-x, 2-y, -z). The dashed ...

Crystal data

C22H20N2O2F(000) = 364
Mr = 344.40Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3779 reflections
a = 9.191 (5) Åθ = 2.4–35.3°
b = 8.794 (4) ŵ = 0.09 mm1
c = 11.317 (5) ÅT = 293 K
β = 113.90 (3)°Block, colourless
V = 836.3 (7) Å30.21 × 0.19 × 0.16 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer3707 independent reflections
Radiation source: fine-focus sealed tube2762 reflections with I > 2σ(I)
graphiteRint = 0.021
ω scansθmax = 35.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→13
Tmin = 0.982, Tmax = 0.986k = −14→14
13095 measured reflectionsl = −18→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difference Fourier map
wR(F2) = 0.164H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.092P)2 + 0.1065P] where P = (Fo2 + 2Fc2)/3
3707 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = −0.21 e Å3
40 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.43532 (12)0.74937 (13)−0.05691 (12)0.0396 (2)
H10.40250.6810−0.01000.048*
C20.32355 (12)0.81402 (14)−0.16802 (13)0.0455 (3)
H20.21660.7884−0.19600.055*
C30.37168 (13)0.91652 (15)−0.23690 (12)0.0450 (3)
H30.29680.9594−0.31210.054*
C40.52981 (13)0.95635 (13)−0.19555 (11)0.0407 (2)
H40.56131.0267−0.24180.049*
C50.64179 (11)0.89038 (11)−0.08403 (10)0.03299 (19)
C60.59569 (11)0.78485 (11)−0.01425 (10)0.03196 (19)
C70.71934 (12)0.71327 (13)0.10586 (11)0.0380 (2)
H7A0.71470.76010.18190.046*
H7B0.69660.60580.10750.046*
C80.89981 (12)0.88699 (12)0.08050 (12)0.0395 (2)
H8A1.00950.90230.09280.047*
H8B0.87960.95200.14150.047*
C90.93646 (9)0.61784 (10)0.05017 (9)0.02906 (18)
C100.93371 (10)0.46677 (11)0.08570 (9)0.03247 (19)
H100.88880.44290.14370.039*
C111.00414 (11)0.64904 (11)−0.03736 (10)0.03289 (19)
H111.00760.7487−0.06360.039*
N10.87985 (9)0.73251 (10)0.10900 (8)0.03406 (18)
O10.79736 (9)0.93289 (9)−0.04855 (8)0.0422 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0309 (4)0.0399 (5)0.0495 (6)−0.0034 (4)0.0178 (4)−0.0027 (4)
C20.0291 (4)0.0477 (6)0.0531 (6)−0.0014 (4)0.0098 (4)−0.0076 (5)
C30.0367 (5)0.0511 (6)0.0380 (5)0.0088 (4)0.0058 (4)−0.0019 (4)
C40.0410 (5)0.0437 (5)0.0385 (5)0.0057 (4)0.0172 (4)0.0055 (4)
C50.0296 (4)0.0340 (4)0.0369 (5)0.0001 (3)0.0151 (3)−0.0001 (3)
C60.0282 (4)0.0338 (4)0.0357 (4)0.0001 (3)0.0149 (3)−0.0011 (3)
C70.0336 (4)0.0450 (5)0.0392 (5)0.0028 (4)0.0188 (4)0.0064 (4)
C80.0331 (4)0.0361 (5)0.0458 (6)−0.0037 (3)0.0121 (4)−0.0023 (4)
C90.0211 (3)0.0341 (4)0.0281 (4)−0.0013 (3)0.0059 (3)0.0035 (3)
C100.0287 (4)0.0372 (4)0.0319 (4)−0.0008 (3)0.0126 (3)0.0071 (3)
C110.0294 (4)0.0329 (4)0.0359 (4)−0.0010 (3)0.0128 (3)0.0076 (3)
N10.0281 (3)0.0366 (4)0.0361 (4)−0.0003 (3)0.0115 (3)0.0012 (3)
O10.0308 (3)0.0426 (4)0.0526 (5)−0.0023 (3)0.0163 (3)0.0117 (3)

Geometric parameters (Å, °)

C1—C21.3832 (16)C7—H7A0.9700
C1—C61.3879 (13)C7—H7B0.9700
C1—H10.9300C8—N11.4252 (13)
C2—C31.3767 (18)C8—O11.4381 (14)
C2—H20.9300C8—H8A0.9700
C3—C41.3795 (16)C8—H8B0.9700
C3—H30.9300C9—C101.3912 (13)
C4—C51.3915 (15)C9—C111.3938 (13)
C4—H40.9300C9—N11.4183 (12)
C5—O11.3713 (11)C10—C11i1.3841 (14)
C5—C61.3912 (13)C10—H100.9300
C6—C71.5113 (14)C11—C10i1.3841 (14)
C7—N11.4709 (12)C11—H110.9300
C2—C1—C6121.12 (10)C6—C7—H7B109.5
C2—C1—H1119.4H7A—C7—H7B108.1
C6—C1—H1119.4N1—C8—O1113.95 (9)
C3—C2—C1119.55 (10)N1—C8—H8A108.8
C3—C2—H2120.2O1—C8—H8A108.8
C1—C2—H2120.2N1—C8—H8B108.8
C2—C3—C4120.67 (10)O1—C8—H8B108.8
C2—C3—H3119.7H8A—C8—H8B107.7
C4—C3—H3119.7C10—C9—C11117.32 (9)
C3—C4—C5119.50 (10)C10—C9—N1119.36 (8)
C3—C4—H4120.3C11—C9—N1123.22 (8)
C5—C4—H4120.3C11i—C10—C9121.98 (8)
O1—C5—C4116.89 (9)C11i—C10—H10119.0
O1—C5—C6122.47 (9)C9—C10—H10119.0
C4—C5—C6120.63 (9)C10i—C11—C9120.70 (8)
C1—C6—C5118.50 (9)C10i—C11—H11119.7
C1—C6—C7121.66 (9)C9—C11—H11119.7
C5—C6—C7119.83 (8)C9—N1—C8117.79 (8)
N1—C7—C6110.80 (8)C9—N1—C7117.51 (8)
N1—C7—H7A109.5C8—N1—C7108.90 (8)
C6—C7—H7A109.5C5—O1—C8113.39 (8)
N1—C7—H7B109.5
C6—C1—C2—C3−0.69 (17)N1—C9—C10—C11i−176.14 (8)
C1—C2—C3—C4−0.61 (18)C10—C9—C11—C10i−0.28 (14)
C2—C3—C4—C50.91 (17)N1—C9—C11—C10i175.99 (8)
C3—C4—C5—O1179.20 (10)C10—C9—N1—C8173.54 (9)
C3—C4—C5—C60.07 (16)C11—C9—N1—C8−2.67 (13)
C2—C1—C6—C51.63 (16)C10—C9—N1—C7−53.04 (11)
C2—C1—C6—C7−179.07 (10)C11—C9—N1—C7130.75 (10)
O1—C5—C6—C1179.60 (9)O1—C8—N1—C971.79 (11)
C4—C5—C6—C1−1.32 (15)O1—C8—N1—C7−65.29 (11)
O1—C5—C6—C70.29 (15)C6—C7—N1—C9−89.66 (10)
C4—C5—C6—C7179.37 (9)C6—C7—N1—C847.56 (11)
C1—C6—C7—N1163.06 (9)C4—C5—O1—C8167.11 (9)
C5—C6—C7—N1−17.65 (13)C6—C5—O1—C8−13.78 (14)
C11—C9—C10—C11i0.29 (15)N1—C8—O1—C547.26 (12)

Symmetry codes: (i) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8A···O1ii0.972.493.3469 (15)147
C3—H3···Cg1iii0.932.723.582 (13)155
C3—H3···Cg1iv0.932.723.582 (13)155

Symmetry codes: (ii) −x+2, −y+2, −z; (iii) −x+1, y+1/2, −z−1/2; (iv) x+1, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2131).

References

  • Billmann, J. H. & Dorman, L. C. (1963). J. Med. Chem.6, 701–708.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Heinisch, L., Wittmann, S., Stoiber, T., Berg, A., Ankel-Fuchs, D. & Mollmann, U. (2002). J. Med. Chem.45, 3032–3039. [PubMed]
  • Huerta, R., Toscano, R. A. & Castillo, I. (2006). Acta Cryst. E62, o2938–o2940.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography