PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o537.
Published online 2009 February 18. doi:  10.1107/S1600536809004942
PMCID: PMC2968454

Phenyl N-[4-chloro-3-(trifluoro­meth­yl)phen­yl]carbamate

Abstract

In the mol­ecule of the title compound, C14H9ClF3NO2, the aromatic rings are oriented at a dihedral angle of 66.49 (3)°. Intra­molecular C—H(...)F and C—H(...)O inter­actions result in the formation of one planar five- and one non-planar six-membered ring. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o537-scheme1.jpg

Experimental

Crystal data

  • C14H9ClF3NO2
  • M r = 315.67
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o537-efi1.jpg
  • a = 8.5680 (17) Å
  • b = 11.152 (2) Å
  • c = 14.232 (3) Å
  • V = 1359.9 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 294 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.910, T max = 0.969
  • 2733 measured reflections
  • 2465 independent reflections
  • 1775 reflections with I > 2σ(I)
  • R int = 0.034
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.188
  • S = 1.00
  • 2465 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.33 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1012 Friedel pairs
  • Flack parameter: −0.1 (2)

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004942/hk2623sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004942/hk2623Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of benzoic acid are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C8-C13) are, of course, planar and the dihedral angle between them is A/B = 66.49 (3)°. The intramolecular C-H···F and C-H···O interactions (Table 1) result in the formations of one planar five- and one nonplanar six-membered rings C (F2/C12-C14/H13A) and D (O2/N/C7-C9/H9A). Ring C is oriented with respect to rings A and B at dihedral angles of 66.33 (3)° and 0.93 (3)°, respectively. So, rings B and C are nearly coplanar.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, phenyl chloroformate (1.0 ml) was added slowly to a cold solution of 4-chloro-3-(trifluoromethyl)benzenamine (1.0 g) and triethylamine (0.8 ml) in methylene chloride (10 ml) at 273 K. The mixture was then warmed and stirred for 1 h at room temperature. Then, it was washed with water (20 ml), dried and concentrated to give the title compound (yield; 1.3 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of an methanol solution.

Refinement

H-atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H9ClF3NO2F(000) = 640
Mr = 315.67Dx = 1.542 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 8.5680 (17) Åθ = 9–13°
b = 11.152 (2) ŵ = 0.32 mm1
c = 14.232 (3) ÅT = 294 K
V = 1359.9 (5) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1775 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
graphiteθmax = 25.4°, θmin = 2.3°
ω/2θ scansh = −10→0
Absorption correction: ψ scan (North et al., 1968)k = −13→13
Tmin = 0.910, Tmax = 0.969l = 0→17
2733 measured reflections3 standard reflections every 120 min
2465 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.188w = 1/[σ2(Fo2) + (0.1P)2 + 0.77P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2465 reflectionsΔρmax = 0.31 e Å3
190 parametersΔρmin = −0.33 e Å3
0 restraintsAbsolute structure: Flack (1983), 1012 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.1 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl0.0048 (2)0.53814 (16)0.89390 (11)0.0988 (6)
O1−0.2368 (5)0.1837 (4)0.4272 (2)0.0826 (12)
O2−0.0472 (4)0.3226 (3)0.4484 (2)0.0666 (9)
N−0.2332 (4)0.2838 (4)0.5598 (2)0.0591 (10)
H0A−0.32300.25030.56580.071*
F1−0.0639 (5)0.2695 (4)0.9446 (2)0.1080 (13)
F2−0.2866 (6)0.2112 (4)0.8948 (2)0.1123 (14)
F3−0.2646 (5)0.3817 (4)0.9590 (2)0.1006 (12)
C1−0.1803 (11)0.1852 (9)0.1733 (4)0.113 (3)
H1A−0.20770.23060.12100.135*
C2−0.2231 (8)0.2230 (6)0.2625 (4)0.0855 (17)
H2A−0.28010.29330.27050.103*
C3−0.1805 (6)0.1559 (5)0.3380 (3)0.0640 (12)
C4−0.0945 (7)0.0528 (6)0.3267 (5)0.0858 (17)
H4A−0.06350.00800.37850.103*
C5−0.0551 (8)0.0171 (7)0.2366 (7)0.108 (2)
H5A0.0023−0.05280.22790.129*
C6−0.0982 (10)0.0814 (9)0.1623 (6)0.107 (3)
H6A−0.07210.05540.10230.128*
C7−0.1599 (6)0.2711 (5)0.4764 (3)0.0592 (12)
C8−0.1749 (5)0.3473 (4)0.6376 (3)0.0552 (10)
C9−0.0823 (6)0.4470 (4)0.6301 (3)0.0630 (12)
H9A−0.05510.47590.57100.076*
C10−0.0296 (6)0.5046 (5)0.7093 (4)0.0701 (14)
H10A0.03170.57310.70370.084*
C11−0.0673 (6)0.4609 (5)0.7972 (3)0.0668 (13)
C12−0.1575 (5)0.3606 (5)0.8067 (3)0.0575 (11)
C13−0.2113 (6)0.3025 (4)0.7261 (3)0.0575 (11)
H13A−0.27170.23360.73160.069*
C14−0.1934 (7)0.3082 (5)0.9005 (4)0.0750 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.1108 (13)0.0951 (10)0.0905 (9)−0.0134 (10)−0.0136 (9)−0.0296 (8)
O10.076 (2)0.100 (3)0.071 (2)−0.028 (2)0.0213 (18)−0.0225 (19)
O20.0450 (19)0.081 (2)0.0734 (19)−0.0056 (17)0.0076 (16)0.0014 (17)
N0.041 (2)0.078 (2)0.0584 (19)−0.0034 (19)0.0061 (17)−0.0029 (18)
F10.112 (3)0.130 (3)0.0824 (19)0.030 (3)−0.007 (2)0.027 (2)
F20.146 (4)0.112 (3)0.0788 (19)−0.032 (3)0.025 (2)0.0049 (19)
F30.106 (3)0.121 (3)0.0750 (18)0.010 (2)0.0225 (19)−0.0228 (19)
C10.120 (6)0.150 (8)0.068 (3)−0.029 (6)0.003 (4)0.008 (4)
C20.085 (4)0.088 (4)0.083 (3)0.015 (4)0.005 (3)0.004 (3)
C30.055 (3)0.078 (3)0.060 (2)−0.010 (3)0.008 (2)−0.011 (2)
C40.068 (4)0.086 (4)0.104 (4)−0.001 (3)−0.006 (3)−0.004 (4)
C50.078 (4)0.099 (5)0.146 (7)0.000 (4)0.020 (5)−0.052 (5)
C60.091 (5)0.131 (7)0.099 (5)−0.021 (5)0.032 (4)−0.042 (5)
C70.045 (3)0.074 (3)0.059 (2)0.011 (3)−0.003 (2)−0.004 (2)
C80.038 (2)0.067 (3)0.060 (2)0.009 (2)0.0014 (19)0.002 (2)
C90.062 (3)0.059 (3)0.068 (3)0.001 (2)0.004 (2)0.006 (2)
C100.069 (3)0.063 (3)0.079 (3)−0.007 (3)0.005 (3)−0.005 (2)
C110.057 (3)0.073 (3)0.071 (3)0.006 (3)−0.003 (2)−0.004 (2)
C120.048 (3)0.064 (3)0.061 (2)0.007 (2)0.000 (2)−0.002 (2)
C130.049 (3)0.057 (3)0.066 (2)0.000 (2)0.001 (2)0.004 (2)
C140.075 (4)0.085 (4)0.065 (3)0.000 (3)0.001 (3)0.001 (3)

Geometric parameters (Å, °)

Cl—C111.738 (5)C4—C51.384 (10)
O1—C71.369 (6)C4—H4A0.9300
O1—C31.393 (6)C5—C61.330 (12)
O2—C71.192 (6)C5—H5A0.9300
N—C71.350 (6)C6—H6A0.9300
N—C81.406 (6)C8—C91.370 (7)
N—H0A0.8600C8—C131.390 (6)
F1—C141.346 (7)C9—C101.373 (7)
F2—C141.347 (7)C9—H9A0.9300
F3—C141.318 (6)C10—C111.381 (7)
C1—C61.363 (12)C10—H10A0.9300
C1—C21.386 (9)C11—C121.366 (8)
C1—H1A0.9300C12—C131.395 (7)
C2—C31.360 (8)C12—C141.490 (7)
C2—H2A0.9300C13—H13A0.9300
C3—C41.375 (9)
C7—O1—C3117.2 (4)C9—C8—C13119.5 (4)
C7—N—C8125.5 (4)C9—C8—N123.5 (4)
C7—N—H0A117.3C13—C8—N116.9 (4)
C8—N—H0A117.3C8—C9—C10120.4 (4)
C6—C1—C2120.0 (7)C8—C9—H9A119.8
C6—C1—H1A120.0C10—C9—H9A119.8
C2—C1—H1A120.0C9—C10—C11120.1 (5)
C3—C2—C1119.0 (7)C9—C10—H10A120.0
C3—C2—H2A120.5C11—C10—H10A120.0
C1—C2—H2A120.5C12—C11—C10120.7 (5)
C2—C3—C4120.7 (5)C12—C11—Cl121.9 (4)
C2—C3—O1120.3 (5)C10—C11—Cl117.3 (4)
C4—C3—O1118.6 (5)C11—C12—C13119.1 (4)
C3—C4—C5118.7 (6)C11—C12—C14121.7 (5)
C3—C4—H4A120.6C13—C12—C14119.1 (5)
C5—C4—H4A120.6C8—C13—C12120.2 (4)
C6—C5—C4120.9 (7)C8—C13—H13A119.9
C6—C5—H5A119.6C12—C13—H13A119.9
C4—C5—H5A119.6F3—C14—F1106.6 (5)
C5—C6—C1120.7 (7)F3—C14—F2105.3 (5)
C5—C6—H6A119.7F1—C14—F2105.0 (5)
C1—C6—H6A119.7F3—C14—C12114.7 (5)
O2—C7—N128.4 (5)F1—C14—C12111.9 (5)
O2—C7—O1124.2 (4)F2—C14—C12112.5 (4)
N—C7—O1107.5 (4)
C6—C1—C2—C30.7 (11)C8—C9—C10—C111.2 (8)
C1—C2—C3—C40.9 (10)C9—C10—C11—C12−0.2 (8)
C1—C2—C3—O1−172.5 (6)C9—C10—C11—Cl179.6 (4)
C7—O1—C3—C2−83.3 (7)C10—C11—C12—C130.0 (7)
C7—O1—C3—C4103.2 (6)Cl—C11—C12—C13−179.8 (4)
C2—C3—C4—C5−1.5 (9)C10—C11—C12—C14177.0 (5)
O1—C3—C4—C5172.0 (5)Cl—C11—C12—C14−2.8 (7)
C3—C4—C5—C60.5 (10)C9—C8—C13—C121.8 (7)
C4—C5—C6—C11.0 (12)N—C8—C13—C12179.9 (4)
C2—C1—C6—C5−1.6 (12)C11—C12—C13—C8−0.8 (7)
C8—N—C7—O2−11.4 (8)C14—C12—C13—C8−177.8 (4)
C8—N—C7—O1167.3 (4)C11—C12—C14—F358.4 (7)
C3—O1—C7—O2−1.4 (7)C13—C12—C14—F3−124.6 (5)
C3—O1—C7—N179.8 (4)C11—C12—C14—F1−63.3 (7)
C7—N—C8—C932.4 (7)C13—C12—C14—F1113.7 (5)
C7—N—C8—C13−145.7 (5)C11—C12—C14—F2178.7 (5)
C13—C8—C9—C10−2.0 (7)C13—C12—C14—F2−4.4 (7)
N—C8—C9—C10180.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.102.943 (5)168
C9—H9A···O20.932.442.950 (5)114
C13—H13A···F20.932.342.687 (5)102

Symmetry codes: (i) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2623).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography