PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o655.
Published online 2009 February 28. doi:  10.1107/S1600536809006138
PMCID: PMC2968452

5-(2,6-Dimethoxy­phen­oxy)-2-methyl­sulfanylmethyl-2H-tetra­zole

Abstract

In the title mol­ecule, C11H14N4O3S, the tetra­zole and benzene rings are nearly perpendicular to each other, forming a dihedral angle of 104.93 (14)°. The crystal packing exhibits weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For a related crystal structure, see: Dabbagh et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o655-scheme1.jpg

Experimental

Crystal data

  • C11H14N4O3S
  • M r = 282.32
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o655-efi1.jpg
  • a = 12.1795 (5) Å
  • b = 11.0809 (4) Å
  • c = 9.9026 (4) Å
  • V = 1336.45 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 173 K
  • 0.50 × 0.25 × 0.10 mm

Data collection

  • Bruker X8 APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.871, T max = 0.975
  • 7950 measured reflections
  • 2873 independent reflections
  • 2670 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.067
  • S = 1.08
  • 2873 reflections
  • 175 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.15 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1220 Friedel pairs
  • Flack parameter: 0.06 (6)

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2008 [triangle]); program(s) used to solve structure: SIR (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006138/cv2515sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006138/cv2515Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Urmia University Research Council for supporting this work. We also gratefully acknowledge the Structural Chemistry Facility of the University of British Columbia.

supplementary crystallographic information

Comment

In continuation of our structural study of tetrazole derivatives (Dabbagh et al., 2005) we report herein the structure of the title compound, (I).

In (I) (Fig. 1), the methylsulfanylmethylation proceeded at N2 atom on tetrazole ring. Because of the conjugation of O3 with tetrazole ring the bond distance O3—C9 [1.3388 (17) Å] is obviously shorter than O3—C1 [1.4062 (15) Å]. A similar effect has been found in 5-(4-nitrophenoxy)-1-methylsulfanylmethyl-1H-tetrazole (Dabbagh et al., 2005). Tetrazole ring in (I) is planar, and 2,6-dimethoxyphenoxy group deviates from the tetrazole ring plane so torsion angles C6—C1—O3—C9 and C1—O3—C9—N4 are -79.52 (17)° and -9.6 (2)°, respectively. The torsion angle O3—C1—C2—C3 of 174.02 (13)° implies steric interaction between the benzene and tetrazole rings. The S1—C10 bond [1.792 (2) Å] is slightly shorter than C11—S1 [1.798 (2) Å] in methylsulfanylmethyl group.

The crystal packing exhibits weak intermolecular C—H···O hydrogen bonds (Table 1).

Experimental

Dry DMSO, 5 ml, was added dropwise over a period of 30 min to a solution of 0.143 g of compound in 4 ml of acetic anhydride. The mixture was stirred for 40 h at 45–50°C, excess DMSO and acetic anhydride were removed under reduced pressure, and the residue was washed with several 2–3-ml portions of water. The precipitate was dissolved in 20 ml of methylene chloride, the solution was dried over calcium chloride and evaporated, and the residue was separated by column chromatography on silica gel to isolate compound. Yield 20%. IR spectrum (KBr), ν, cm-1: 3050, 2975, 1590, 1530, 1390, 1370, 1300, 1260, 1180, 1110, 760. 1H NMR (300 MHz, DMSO-d6), δ: 7.14 (t, 1H, J = 10 Hz), 6.65 (d, 2H, J = 10 Hz), 5.48 (s, 2H), 3.71 (s, 6H), 2.17 (s, 3H). 13 C NMR (75 MHz, DMSO-d6), δ: 177.50, 152.29, 131.80, 126.74, 105.44, 78.88, 56.20, 56.03, 15.48. Mass spectrum (EI), m/z (Irel, %) 284 (0.6) [M + 2]+, 282 (15) [M]+, 281 (20), 236 (83), 151 (73), 140 (39), 107 (59), 43 (100).

Refinement

All H atoms were geometrically positioned (C—H 0.95–0.99 Å), and allowed to ride on their parent atoms, with Uiso(H) = 1.2–1.5 Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.

Crystal data

C11H14N4O3SF(000) = 592
Mr = 282.32Dx = 1.403 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4562 reflections
a = 12.1795 (5) Åθ = 2.8–27.8°
b = 11.0809 (4) ŵ = 0.25 mm1
c = 9.9026 (4) ÅT = 173 K
V = 1336.45 (9) Å3Irregular, colourless
Z = 40.50 × 0.25 × 0.10 mm

Data collection

Bruker X8 APEXII diffractometer2873 independent reflections
Radiation source: fine-focus sealed tube2670 reflections with I > 2σ(I)
graphiteRint = 0.020
Area–detector scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −16→15
Tmin = 0.871, Tmax = 0.975k = −14→14
7950 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.067w = 1/[σ2(Fo2) + (0.0323P)2 + 0.1529P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
2873 reflectionsΔρmax = 0.18 e Å3
175 parametersΔρmin = −0.15 e Å3
1 restraintAbsolute structure: Flack (1983), 1220 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.06 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.56871 (11)0.77249 (11)0.88143 (15)0.0219 (3)
C20.65815 (12)0.75439 (12)0.96546 (15)0.0236 (3)
C30.74485 (12)0.83700 (14)0.96021 (18)0.0282 (3)
H30.80750.82641.01610.034*
C40.73884 (12)0.93401 (13)0.87333 (17)0.0296 (3)
H40.79840.98930.87000.035*
C50.64873 (13)0.95357 (13)0.79062 (17)0.0279 (3)
H50.64601.02150.73220.033*
C60.56210 (12)0.87112 (12)0.79505 (15)0.0244 (3)
C70.74036 (16)0.64203 (15)1.1436 (2)0.0417 (4)
H7A0.80860.62131.09660.063*
H7B0.72160.57761.20730.063*
H7C0.75030.71791.19300.063*
C80.45668 (14)0.97946 (14)0.6331 (2)0.0388 (4)
H8A0.46211.05390.68610.058*
H8B0.38480.97610.58870.058*
H8C0.51480.97820.56460.058*
C90.39202 (11)0.70979 (11)0.94053 (14)0.0213 (3)
C100.12256 (13)0.65157 (14)1.0324 (2)0.0334 (3)
H10A0.09720.68041.12170.040*
H10B0.12160.56221.03410.040*
C110.05905 (16)0.59888 (17)0.77160 (19)0.0451 (4)
H11A0.13600.60800.74450.068*
H11B0.01130.61570.69410.068*
H11C0.04640.51620.80310.068*
N10.30621 (9)0.63680 (9)0.92891 (14)0.0250 (3)
N20.23531 (10)0.69247 (10)1.01082 (14)0.0266 (3)
N30.27358 (11)0.79161 (11)1.06706 (16)0.0328 (3)
N40.37580 (11)0.80385 (11)1.02308 (15)0.0298 (3)
O10.65369 (8)0.65558 (9)1.04724 (12)0.0297 (2)
O20.46880 (9)0.87735 (9)0.72061 (12)0.0316 (3)
O30.48597 (8)0.68410 (8)0.87649 (10)0.0231 (2)
S10.02856 (3)0.70315 (4)0.90562 (6)0.04717 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0180 (6)0.0215 (6)0.0261 (8)−0.0025 (5)0.0015 (6)−0.0033 (5)
C20.0226 (7)0.0245 (6)0.0237 (8)0.0029 (5)0.0009 (6)−0.0048 (5)
C30.0182 (7)0.0354 (7)0.0310 (9)−0.0003 (5)−0.0019 (6)−0.0091 (6)
C40.0239 (7)0.0294 (7)0.0354 (9)−0.0069 (5)0.0059 (6)−0.0086 (6)
C50.0292 (7)0.0237 (6)0.0308 (8)−0.0041 (5)0.0051 (6)−0.0009 (6)
C60.0239 (7)0.0249 (6)0.0243 (8)0.0007 (5)0.0008 (6)−0.0018 (5)
C70.0426 (10)0.0425 (8)0.0400 (10)0.0014 (8)−0.0177 (9)0.0046 (8)
C80.0417 (9)0.0323 (8)0.0425 (10)−0.0001 (7)−0.0069 (9)0.0140 (7)
C90.0203 (6)0.0197 (5)0.0238 (8)0.0018 (5)−0.0028 (6)0.0026 (5)
C100.0221 (7)0.0346 (7)0.0436 (9)−0.0046 (6)0.0078 (7)−0.0024 (7)
C110.0453 (11)0.0475 (10)0.0423 (11)−0.0133 (8)−0.0079 (9)0.0117 (8)
N10.0201 (5)0.0251 (5)0.0298 (7)−0.0018 (4)0.0008 (5)−0.0012 (5)
N20.0209 (6)0.0257 (6)0.0332 (8)−0.0011 (5)0.0028 (5)−0.0010 (5)
N30.0267 (6)0.0288 (6)0.0430 (9)−0.0028 (5)0.0053 (6)−0.0072 (5)
N40.0244 (6)0.0267 (6)0.0382 (8)−0.0030 (5)0.0022 (6)−0.0059 (5)
O10.0279 (6)0.0299 (5)0.0312 (6)0.0007 (4)−0.0075 (5)0.0025 (4)
O20.0296 (6)0.0292 (5)0.0361 (7)−0.0045 (4)−0.0102 (5)0.0098 (4)
O30.0187 (5)0.0204 (4)0.0302 (6)−0.0028 (3)−0.0003 (4)−0.0023 (4)
S10.02395 (18)0.0424 (2)0.0752 (4)0.00636 (16)−0.0048 (2)0.0022 (2)

Geometric parameters (Å, °)

C1—O31.4062 (15)C7—H7B0.9800
C9—O31.3388 (17)C7—H7C0.9800
N2—C101.4618 (19)C8—O21.4330 (18)
S1—C101.792 (2)C8—H8A0.9800
C6—O21.3562 (18)C8—H8B0.9800
C2—O11.3630 (17)C8—H8C0.9800
C1—C21.385 (2)C9—N11.3265 (17)
C1—C61.390 (2)C9—N41.3393 (18)
C2—C31.399 (2)C10—H10A0.9900
C3—C41.379 (2)C10—H10B0.9900
C3—H30.9500C11—S11.798 (2)
C4—C51.386 (2)C11—H11A0.9800
C4—H40.9500C11—H11B0.9800
C5—C61.3964 (19)C11—H11C0.9800
C5—H50.9500N1—N21.3357 (17)
C7—O11.431 (2)N2—N31.3169 (17)
C7—H7A0.9800N3—N41.3260 (18)
C9—O3—C1116.61 (10)O2—C8—H8B109.5
N2—C10—S1113.52 (12)H8A—C8—H8B109.5
C10—S1—C11100.37 (9)O2—C8—H8C109.5
C2—C1—C6121.93 (12)H8A—C8—H8C109.5
C2—C1—O3118.92 (12)H8B—C8—H8C109.5
C6—C1—O3118.99 (12)N1—C9—O3120.17 (11)
O1—C2—C1116.22 (12)N1—C9—N4114.28 (12)
O1—C2—C3125.32 (13)O3—C9—N4125.50 (12)
C1—C2—C3118.47 (13)N2—C10—H10A108.9
C4—C3—C2119.57 (14)S1—C10—H10A108.9
C4—C3—H3120.2N2—C10—H10B108.9
C2—C3—H3120.2S1—C10—H10B108.9
C3—C4—C5122.18 (13)H10A—C10—H10B107.7
C3—C4—H4118.9S1—C11—H11A109.5
C5—C4—H4118.9S1—C11—H11B109.5
C4—C5—C6118.51 (14)H11A—C11—H11B109.5
C4—C5—H5120.7S1—C11—H11C109.5
C6—C5—H5120.7H11A—C11—H11C109.5
O2—C6—C1115.02 (12)H11B—C11—H11C109.5
O2—C6—C5125.64 (13)C9—N1—N2100.09 (11)
C1—C6—C5119.33 (14)N3—N2—N1114.41 (12)
O1—C7—H7A109.5N3—N2—C10121.96 (13)
O1—C7—H7B109.5N1—N2—C10123.56 (12)
H7A—C7—H7B109.5N2—N3—N4106.18 (12)
O1—C7—H7C109.5N3—N4—C9105.04 (12)
H7A—C7—H7C109.5C2—O1—C7116.81 (12)
H7B—C7—H7C109.5C6—O2—C8117.09 (12)
O2—C8—H8A109.5
C6—C1—O3—C9−79.52 (17)N4—C9—N1—N2−0.13 (16)
N4—C9—O3—C1−9.6 (2)C9—N1—N2—N30.54 (16)
C6—C1—C2—O1178.73 (13)C9—N1—N2—C10177.63 (14)
O3—C1—C2—O1−5.86 (18)S1—C10—N2—N393.31 (17)
C6—C1—C2—C3−1.4 (2)S1—C10—N2—N1−83.56 (15)
O3—C1—C2—C3174.02 (13)N1—N2—N3—N4−0.76 (18)
O1—C2—C3—C4−179.56 (14)C10—N2—N3—N4−177.90 (15)
C1—C2—C3—C40.6 (2)N2—N3—N4—C90.60 (17)
C2—C3—C4—C50.5 (2)N1—C9—N4—N3−0.31 (17)
C3—C4—C5—C6−0.7 (2)O3—C9—N4—N3−177.81 (14)
C2—C1—C6—O2−179.07 (13)C1—C2—O1—C7−174.19 (14)
O3—C1—C6—O25.51 (18)C3—C2—O1—C75.9 (2)
C2—C1—C6—C51.2 (2)C1—C6—O2—C8178.13 (14)
O3—C1—C6—C5−174.26 (13)C5—C6—O2—C8−2.1 (2)
C4—C5—C6—O2−179.84 (14)N1—C9—O3—C1173.03 (12)
C4—C5—C6—C1−0.1 (2)C2—C1—O3—C9104.93 (14)
O3—C9—N1—N2177.52 (12)N2—C10—S1—C1178.85 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.992.453.4277 (19)170
C11—H11C···O3i0.982.453.421 (2)172
C11—H11B···O1ii0.982.523.471 (2)163
C10—H10A···O2iii0.992.523.312 (2)137

Symmetry codes: (i) x−1/2, −y+1, z; (ii) −x+1/2, y, z−1/2; (iii) −x+1/2, y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2515).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dabbagh, H. A., Noroozi Pesyan, N., Bagheri, A., Takemoto, S. & Hayashi, H. (2005). Russ. J. Org. Chem.41, 1055–1063.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography