PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m279.
Published online 2009 February 18. doi:  10.1107/S1600536809004577
PMCID: PMC2968447

Bis(3,5-dimethyl-1H-pyrazole-κN 2)(pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)copper(II)

Abstract

In the crystal structure of the title compound, [Cu(C7H3NO4)(C5H8N2)2], the CuII cation assumes a distorted trigonal–bipyramidal coordination geometry formed by a pyridine-2,6-dicarboxyl­ate dianion and two 3,5-dimethyl-1H-pyrazole mol­ecules. N—H(...)O hydrogen bonding is present in the crystal structure.

Related literature

For general background, see: Haanstra et al. (1990 [triangle]); Mukherjee (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m279-scheme1.jpg

Experimental

Crystal data

  • [Cu(C7H3NO4)(C5H8N2)2]
  • M r = 420.91
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m279-efi1.jpg
  • a = 8.4572 (12) Å
  • b = 8.5083 (12) Å
  • c = 13.942 (2) Å
  • α = 72.986 (2)°
  • β = 85.500 (2)°
  • γ = 66.760 (2)°
  • V = 880.7 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.28 mm−1
  • T = 295 K
  • 0.23 × 0.15 × 0.13 mm

Data collection

  • Bruker APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.775, T max = 0.845
  • 4570 measured reflections
  • 3036 independent reflections
  • 2497 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.106
  • S = 1.05
  • 3036 reflections
  • 248 parameters
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004577/xu2458sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004577/xu2458Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (grant No. AB0448).

supplementary crystallographic information

Comment

Complexes with pyrazole-based ligands are a frequent subject of chemical investigations giving an opportunity for a better understanding the relationship between the structure and the activity of the active site of metalloproteins (Haanstra et al., 1990). Nowadays, attention is paid to the design of various pyrazole ligands with special structural properties to fulfill the specific stereochemical requirements of a particular metal-binding site (Mukherjee, 2000). In our systematic studies on transition metal complexes with the pyrazole derivatives, the title compound was prepared and its X-ray structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The compound assumes a distorted triangular bipyramid coordination geometry (Table 1), formed by a pyridine-2,6-dicarboxylate dianion and two 3,5-dimethyl-1-H-pyrazole molecules. Tridentate ligand pyridine-2,6-dicarboxylate dianion chelates to the Cu atom by a N atom of pyridine ring and two O atoms of carboxyl groups with a meridional configuration. Monodentate ligand 3,5-dimethyl-1-H-pyrazole coordinated to the Cu atom by N atoms of pyrazole rings with the 1.917 (3) Å and 1.994 (3) Å of Cu—N bound distance. The adjacent molecules are linked together via N—H···O hydrogen bonding (Table 2) between carboxy groups of pyridine-2,6-dicarboxylate dianion and uncoordinated N atom of 3,5-dimethyl-1-H-pyrazoleto, forming the supra-molecular structure (Fig. 2).

Experimental

An ethanol–water solution (1:1, 20 ml) containing 1-carboxamide-3,5-dimethylpyrazole (0.14 g, 1 mmol) and CuCl2.2H2O (0.17 g, 1 mmol) was mixed with an aqueous solution (10 ml) of pyridine-2,3-dicarboxylic acid (0.17 g, 1 mmol) and NaOH (0.08 g, 2 mmol). The mixture was refluxed for 6 h. After cooling to room temperature the solution was filtered. Single crystals were obtained from the filtrate after 3 d.

Refinement

Methyl H were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of (I) with 30% probability displacement ellipsoids.
Fig. 2.
The unit cell packing diagram showing hydrogen bonding (dashed lines).

Crystal data

[Cu(C7H3NO4)(C5H8N2)2]Z = 2
Mr = 420.91F(000) = 434
Triclinic, P1Dx = 1.587 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4572 (12) ÅCell parameters from 2980 reflections
b = 8.5083 (12) Åθ = 2.0–25.0°
c = 13.942 (2) ŵ = 1.27 mm1
α = 72.986 (2)°T = 295 K
β = 85.500 (2)°Prism, blue
γ = 66.760 (2)°0.23 × 0.15 × 0.13 mm
V = 880.7 (2) Å3

Data collection

Bruker APEX CCD diffractometer3036 independent reflections
Radiation source: fine-focus sealed tube2497 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→10
Tmin = 0.775, Tmax = 0.845k = −8→10
4570 measured reflectionsl = −16→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.044P)2 + 0.8468P] where P = (Fo2 + 2Fc2)/3
3036 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.48595 (5)0.08560 (6)0.27695 (4)0.03571 (17)
O110.6674 (3)0.1852 (3)0.2773 (2)0.0441 (7)
O120.9462 (3)0.1267 (4)0.2534 (2)0.0532 (8)
O130.3807 (3)−0.0884 (3)0.2770 (2)0.0422 (6)
O140.4427 (4)−0.3530 (4)0.2516 (2)0.0509 (7)
N110.6858 (3)−0.1038 (4)0.2513 (2)0.0293 (6)
N210.3623 (4)0.2984 (4)0.1424 (2)0.0337 (7)
N220.3694 (4)0.4602 (4)0.1294 (2)0.0350 (7)
H22A0.42230.48230.17090.042*
N310.3204 (3)0.1863 (4)0.3744 (2)0.0314 (7)
N320.1637 (3)0.1746 (4)0.3799 (2)0.0331 (7)
H32A0.12830.13070.34190.040*
C110.8379 (4)−0.0898 (5)0.2490 (3)0.0347 (8)
C120.9861 (5)−0.2312 (5)0.2403 (3)0.0443 (10)
H121.0932−0.22370.23750.053*
C130.9699 (5)−0.3839 (5)0.2359 (3)0.0512 (11)
H131.0683−0.48080.23030.061*
C140.8112 (5)−0.3972 (5)0.2396 (3)0.0437 (10)
H140.8016−0.50080.23650.052*
C150.6684 (4)−0.2511 (4)0.2481 (2)0.0328 (8)
C160.8196 (4)0.0886 (5)0.2600 (3)0.0363 (8)
C170.4818 (5)−0.2331 (5)0.2587 (3)0.0350 (8)
C210.2857 (5)0.5808 (5)0.0456 (3)0.0375 (8)
C220.2196 (5)0.4948 (5)0.0004 (3)0.0424 (9)
H220.15460.5431−0.05970.051*
C230.2699 (5)0.3211 (5)0.0628 (3)0.0377 (9)
C240.2736 (6)0.7685 (5)0.0153 (3)0.0524 (11)
H24A0.25200.81260.07310.079*
H24B0.18100.8414−0.03400.079*
H24C0.37980.7723−0.01260.079*
C250.2362 (6)0.1690 (6)0.0483 (3)0.0555 (11)
H25A0.19080.11500.10820.083*
H25B0.34180.08190.03410.083*
H25C0.15430.2128−0.00690.083*
C310.0715 (4)0.2404 (5)0.4523 (3)0.0344 (8)
C320.1727 (4)0.2944 (5)0.4958 (3)0.0361 (8)
H320.14440.34470.54890.043*
C330.3257 (4)0.2602 (4)0.4457 (2)0.0300 (8)
C34−0.1051 (4)0.2448 (6)0.4742 (3)0.0463 (10)
H34A−0.12350.16200.44660.069*
H34B−0.18840.36300.44450.069*
H34C−0.11740.21210.54550.069*
C350.4794 (5)0.2936 (6)0.4643 (3)0.0458 (10)
H35A0.57600.18190.48640.069*
H35B0.45540.35480.51500.069*
H35C0.50570.36580.40330.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0240 (2)0.0284 (3)0.0603 (3)−0.01015 (18)0.00311 (19)−0.0211 (2)
O110.0298 (13)0.0415 (15)0.0719 (19)−0.0164 (12)0.0073 (13)−0.0298 (14)
O120.0338 (15)0.074 (2)0.070 (2)−0.0317 (14)0.0095 (13)−0.0341 (16)
O130.0317 (13)0.0328 (14)0.0679 (18)−0.0128 (11)−0.0016 (12)−0.0216 (13)
O140.0624 (18)0.0405 (16)0.0659 (19)−0.0304 (14)0.0011 (14)−0.0235 (14)
N110.0264 (14)0.0292 (15)0.0309 (15)−0.0084 (12)0.0004 (12)−0.0099 (12)
N210.0346 (16)0.0286 (16)0.0452 (18)−0.0157 (13)0.0031 (14)−0.0168 (13)
N220.0402 (17)0.0316 (16)0.0422 (18)−0.0195 (14)0.0032 (14)−0.0159 (14)
N310.0228 (14)0.0334 (16)0.0435 (17)−0.0137 (12)0.0031 (12)−0.0154 (13)
N320.0275 (15)0.0378 (17)0.0418 (18)−0.0177 (13)0.0037 (13)−0.0163 (14)
C110.0294 (18)0.041 (2)0.0299 (19)−0.0110 (16)0.0026 (15)−0.0092 (16)
C120.0291 (19)0.052 (3)0.044 (2)−0.0086 (18)0.0083 (17)−0.0135 (19)
C130.046 (2)0.040 (2)0.049 (2)0.0004 (19)0.0159 (19)−0.0142 (19)
C140.054 (2)0.030 (2)0.042 (2)−0.0102 (18)0.0095 (19)−0.0140 (17)
C150.042 (2)0.0288 (19)0.0280 (18)−0.0117 (16)0.0020 (15)−0.0115 (15)
C160.0307 (19)0.045 (2)0.038 (2)−0.0175 (17)−0.0014 (16)−0.0151 (17)
C170.044 (2)0.0299 (19)0.033 (2)−0.0163 (17)−0.0036 (16)−0.0080 (15)
C210.042 (2)0.033 (2)0.040 (2)−0.0161 (17)0.0095 (17)−0.0135 (17)
C220.051 (2)0.041 (2)0.040 (2)−0.0217 (19)−0.0025 (18)−0.0133 (18)
C230.042 (2)0.034 (2)0.042 (2)−0.0176 (17)0.0028 (17)−0.0149 (17)
C240.072 (3)0.034 (2)0.054 (3)−0.026 (2)0.004 (2)−0.0104 (19)
C250.072 (3)0.047 (3)0.063 (3)−0.032 (2)−0.010 (2)−0.022 (2)
C310.0277 (18)0.034 (2)0.041 (2)−0.0130 (16)0.0045 (15)−0.0096 (16)
C320.039 (2)0.044 (2)0.033 (2)−0.0211 (18)0.0062 (16)−0.0168 (16)
C330.0290 (18)0.0294 (18)0.0334 (19)−0.0135 (15)−0.0015 (15)−0.0077 (15)
C340.032 (2)0.054 (3)0.061 (3)−0.0224 (19)0.0146 (18)−0.022 (2)
C350.038 (2)0.060 (3)0.053 (2)−0.028 (2)0.0018 (18)−0.025 (2)

Geometric parameters (Å, °)

Cu—N111.917 (3)C14—C151.377 (5)
Cu—N212.172 (3)C14—H140.9300
Cu—N311.994 (3)C15—C171.523 (5)
Cu—O112.025 (2)C21—C221.376 (5)
Cu—O132.006 (2)C21—C241.491 (5)
O11—C161.274 (4)C22—C231.390 (5)
O12—C161.225 (4)C22—H220.9300
O13—C171.277 (4)C23—C251.500 (5)
O14—C171.221 (4)C24—H24A0.9600
N11—C151.332 (4)C24—H24B0.9600
N11—C111.334 (4)C24—H24C0.9600
N21—C231.331 (4)C25—H25A0.9600
N21—N221.360 (4)C25—H25B0.9600
N22—C211.332 (5)C25—H25C0.9600
N22—H22A0.8600C31—C321.366 (5)
N31—C331.335 (4)C31—C341.489 (5)
N31—N321.362 (3)C32—C331.388 (5)
N32—C311.343 (4)C32—H320.9300
N32—H32A0.8600C33—C351.492 (4)
C11—C121.380 (5)C34—H34A0.9600
C11—C161.516 (5)C34—H34B0.9600
C12—C131.378 (6)C34—H34C0.9600
C12—H120.9300C35—H35A0.9600
C13—C141.387 (6)C35—H35B0.9600
C13—H130.9300C35—H35C0.9600
N11—Cu—N31149.17 (12)O14—C17—O13126.4 (4)
N11—Cu—O1380.43 (11)O14—C17—C15119.8 (3)
N31—Cu—O1392.70 (11)O13—C17—C15113.7 (3)
N11—Cu—O1179.88 (11)N22—C21—C22106.1 (3)
N31—Cu—O11102.35 (10)N22—C21—C24122.8 (3)
O13—Cu—O11159.96 (10)C22—C21—C24131.1 (4)
N11—Cu—N21113.60 (11)C21—C22—C23105.9 (3)
N31—Cu—N2197.19 (11)C21—C22—H22127.0
O13—Cu—N21101.01 (10)C23—C22—H22127.0
O11—Cu—N2190.27 (11)N21—C23—C22110.8 (3)
C16—O11—Cu115.7 (2)N21—C23—C25120.8 (3)
C17—O13—Cu116.0 (2)C22—C23—C25128.4 (3)
C15—N11—C11123.2 (3)C21—C24—H24A109.5
C15—N11—Cu117.9 (2)C21—C24—H24B109.5
C11—N11—Cu118.4 (2)H24A—C24—H24B109.5
C23—N21—N22104.5 (3)C21—C24—H24C109.5
C23—N21—Cu137.2 (2)H24A—C24—H24C109.5
N22—N21—Cu118.3 (2)H24B—C24—H24C109.5
C21—N22—N21112.7 (3)C23—C25—H25A109.5
C21—N22—H22A123.6C23—C25—H25B109.5
N21—N22—H22A123.6H25A—C25—H25B109.5
C33—N31—N32105.7 (3)C23—C25—H25C109.5
C33—N31—Cu135.3 (2)H25A—C25—H25C109.5
N32—N31—Cu118.9 (2)H25B—C25—H25C109.5
C31—N32—N31111.4 (3)N32—C31—C32106.3 (3)
C31—N32—H32A124.3N32—C31—C34122.6 (3)
N31—N32—H32A124.3C32—C31—C34131.1 (3)
N11—C11—C12119.7 (3)C31—C32—C33107.0 (3)
N11—C11—C16111.7 (3)C31—C32—H32126.5
C12—C11—C16128.6 (3)C33—C32—H32126.5
C13—C12—C11117.7 (4)N31—C33—C32109.5 (3)
C13—C12—H12121.1N31—C33—C35121.9 (3)
C11—C12—H12121.1C32—C33—C35128.5 (3)
C12—C13—C14121.9 (3)C31—C34—H34A109.5
C12—C13—H13119.0C31—C34—H34B109.5
C14—C13—H13119.0H34A—C34—H34B109.5
C15—C14—C13117.4 (4)C31—C34—H34C109.5
C15—C14—H14121.3H34A—C34—H34C109.5
C13—C14—H14121.3H34B—C34—H34C109.5
N11—C15—C14120.0 (3)C33—C35—H35A109.5
N11—C15—C17111.8 (3)C33—C35—H35B109.5
C14—C15—C17128.2 (3)H35A—C35—H35B109.5
O12—C16—O11126.2 (3)C33—C35—H35C109.5
O12—C16—C11119.7 (3)H35A—C35—H35C109.5
O11—C16—C11114.1 (3)H35B—C35—H35C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N22—H22A···O14i0.862.102.888 (4)151
N32—H32A···O12ii0.862.062.860 (4)155

Symmetry codes: (i) x, y+1, z; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2458).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Haanstra, W. G., Van der Donk, W. A. J. W., Driessen, W. L., Reedijk, J., Wood, J. S. & Drew, M. G. B. (1990). J. Chem. Soc. Dalton Trans. pp. 3123–3128.
  • Mukherjee, R. (2000). Coord. Chem. Rev.203, 151–218.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography