PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o463.
Published online 2009 February 4. doi:  10.1107/S1600536809001792
PMCID: PMC2968444

3,5-Dimethyl-2,6-diphenyl-3,4,5,6-tetra­hydro-2H-pyran-4-one

Abstract

The mol­ecular structure of the title compound, C19H20O2, reveals a slightly distorted chair conformation for the tetra­hydro­pyran ring with the two methyl and two phenyl substituents in equatorial positions.

Related literature

For the isolation of the title compound from its natural source and its biological activity, see: Noller (1966 [triangle]). For conformational studies, see: Belakhov et al. (2002 [triangle]); Jose Kavitha et al. (2003 [triangle]); Kumar et al. (1999 [triangle]); Ray et al. (1998 [triangle]); Usman et al. (2002 [triangle]). For the synthesis of related molecules, see: Krishnamoorthy et al. (2003 [triangle]); Parthiban et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o463-scheme1.jpg

Experimental

Crystal data

  • C19H20O2
  • M r = 280.35
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o463-efi1.jpg
  • a = 14.7247 (10) Å
  • b = 9.2803 (7) Å
  • c = 23.0393 (16) Å
  • V = 3148.3 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 (2) K
  • 0.32 × 0.18 × 0.11 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: none
  • 18754 measured reflections
  • 3885 independent reflections
  • 1969 reflections with I > 2σ(I)
  • R int = 0.083

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.163
  • S = 0.92
  • 3885 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and local programs.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001792/bt2850sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001792/bt2850Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan, Islamabad, for a grant for the purchase of the diffractometer.

supplementary crystallographic information

Comment

Tetrahydropyran-4-one moiety has been found in various naturally occurring biologically active heterocyclic compounds (Noller, 1966). Japp and Maitland reported the synthesis of various tetrahydropyrans (Japp & Maitland, 1904) for the first time. Since then, a large number of tetrahydropyran derivatives have been reported with different conformations for the six-membered heterocyclic ring such as sofa (Ray et al., 1998), planar (Kumar et al., 1999), chair (Belakhov et al., 2002; Krishnamoorthy et al., 2003; Jose Kavitha et al., 2003) or twist boat (Usman et al., 2002). Adoption of a particular conformation mainly depends upon the number and nature of the substituents and the level of unsaturation.

In the title compound C19H20O2,as shown in Fig. 1, the tetrahydropyran ring adopts a chair conformation with two methyl and two phenyl groups attached to it. All the methyl and phenyl groups occupy equatorial positions as was also reported for related molecules (Parthiban et al., 2003; Krishnamoorthy et al., 2003; Jose Kavitha et al., 2003). There are no strong intermolecular interactions between the molecules.

Experimental

An alcoholic solution of sodium hydroxide (8%; 10.0 ml) was added drop wise to a mixture of 3-pentanone (1.06 ml) and benzaldehyde (2.1 ml) while stirring. The contents were kept stirred for another six hours till the formation of precipitates at bottom which were washed with cold water and re-crystallized in acetone for X-Ray studies.

Refinement

H atoms bound to C were placed in calculated positions (C—H distance = 0.93 to 0.98Å) using a riding model with U(H) set to 1.2 Ueq(C) or 1.5 Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C19H20O2F(000) = 1200
Mr = 280.35Dx = 1.183 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1807 reflections
a = 14.7247 (10) Åθ = 2.7–21.7°
b = 9.2803 (7) ŵ = 0.08 mm1
c = 23.0393 (16) ÅT = 296 K
V = 3148.3 (4) Å3Needles, orange
Z = 80.32 × 0.18 × 0.11 mm

Data collection

Bruker APEXII CCD area-detector diffractometer1969 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.083
graphiteθmax = 28.3°, θmin = 2.2°
Detector resolution: 7.5 pixels mm-1h = −12→19
[var phi] and ω scansk = −12→12
18754 measured reflectionsl = −30→28
3885 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 0.92w = 1/[σ2(Fo2) + (0.0702P)2] where P = (Fo2 + 2Fc2)/3
3885 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.26436 (11)0.0831 (2)0.17630 (7)0.0820 (6)
O20.49065 (9)0.29668 (16)0.21555 (6)0.0484 (4)
C10.34164 (16)0.1191 (2)0.18707 (11)0.0536 (6)
C20.37801 (14)0.1225 (2)0.24820 (9)0.0509 (6)
H20.42680.05090.25070.061*
C30.42129 (14)0.2730 (2)0.25768 (9)0.0481 (6)
H30.37410.34630.25240.058*
C40.40680 (15)0.1656 (3)0.14038 (9)0.0524 (6)
H40.45280.08970.13710.063*
C50.45719 (15)0.3048 (3)0.15765 (9)0.0493 (6)
H50.41490.38600.15490.059*
C60.46250 (14)0.2921 (2)0.31692 (9)0.0466 (6)
C70.41229 (16)0.3486 (2)0.36203 (10)0.0530 (6)
H70.35270.37730.35530.064*
C80.44825 (17)0.3634 (3)0.41681 (11)0.0622 (7)
H80.41300.40130.44660.075*
C90.53592 (18)0.3224 (3)0.42750 (11)0.0672 (7)
H90.56020.33170.46460.081*
C100.58800 (17)0.2672 (3)0.38303 (11)0.0649 (7)
H100.64790.24050.39000.078*
C110.55156 (15)0.2515 (3)0.32831 (10)0.0562 (6)
H110.58700.21330.29860.067*
C120.53684 (15)0.3335 (2)0.11866 (9)0.0464 (6)
C130.61089 (15)0.2416 (3)0.11876 (10)0.0581 (7)
H130.61200.16350.14400.070*
C140.68301 (16)0.2649 (3)0.08169 (13)0.0701 (8)
H140.73250.20260.08230.084*
C150.68223 (19)0.3787 (4)0.04411 (12)0.0749 (8)
H150.73070.39330.01890.090*
C160.6098 (2)0.4710 (3)0.04381 (11)0.0745 (8)
H160.60940.54940.01870.089*
C170.53748 (17)0.4482 (3)0.08070 (10)0.0607 (7)
H170.48840.51120.07990.073*
C180.30683 (16)0.0820 (3)0.29241 (11)0.0744 (8)
H18A0.33300.08460.33060.112*
H18B0.2850−0.01340.28440.112*
H18C0.25730.14900.29040.112*
C190.36211 (17)0.1792 (3)0.08100 (11)0.0801 (9)
H19A0.40680.20730.05280.120*
H19B0.31510.25070.08260.120*
H19C0.33630.08810.07010.120*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0478 (10)0.1251 (17)0.0730 (12)−0.0189 (11)−0.0087 (9)−0.0002 (11)
O20.0483 (9)0.0578 (9)0.0389 (9)−0.0037 (7)0.0026 (7)0.0010 (8)
C10.0424 (14)0.0601 (15)0.0582 (16)−0.0004 (12)−0.0031 (12)−0.0027 (13)
C20.0448 (13)0.0581 (14)0.0500 (15)−0.0028 (11)−0.0009 (12)0.0031 (12)
C30.0447 (12)0.0545 (14)0.0450 (14)0.0039 (11)0.0017 (11)0.0024 (12)
C40.0433 (14)0.0677 (17)0.0462 (14)−0.0014 (11)−0.0047 (12)−0.0027 (12)
C50.0501 (14)0.0552 (14)0.0427 (14)0.0081 (11)−0.0033 (12)0.0029 (11)
C60.0443 (13)0.0492 (13)0.0463 (14)−0.0017 (11)0.0014 (11)0.0033 (12)
C70.0537 (15)0.0565 (15)0.0489 (15)0.0024 (11)0.0035 (13)−0.0002 (12)
C80.0755 (18)0.0663 (17)0.0447 (15)−0.0013 (14)0.0069 (14)−0.0003 (13)
C90.080 (2)0.0714 (18)0.0503 (16)−0.0095 (15)−0.0124 (16)0.0052 (14)
C100.0531 (16)0.0769 (19)0.0646 (18)0.0011 (13)−0.0129 (14)0.0070 (15)
C110.0509 (14)0.0659 (16)0.0518 (15)0.0019 (12)0.0004 (13)−0.0004 (13)
C120.0487 (14)0.0514 (14)0.0391 (13)−0.0006 (11)−0.0002 (11)−0.0006 (11)
C130.0478 (14)0.0622 (16)0.0644 (17)0.0017 (12)0.0012 (13)0.0047 (13)
C140.0489 (15)0.086 (2)0.076 (2)0.0030 (14)0.0021 (15)−0.0113 (18)
C150.0689 (19)0.105 (2)0.0512 (17)−0.0200 (18)0.0112 (15)−0.0052 (17)
C160.089 (2)0.083 (2)0.0518 (17)−0.0164 (17)0.0014 (17)0.0147 (15)
C170.0705 (17)0.0613 (16)0.0502 (15)0.0059 (13)−0.0026 (14)0.0067 (14)
C180.0675 (17)0.089 (2)0.0669 (18)−0.0198 (15)0.0073 (15)0.0073 (15)
C190.0700 (18)0.120 (2)0.0506 (17)−0.0133 (16)−0.0127 (14)−0.0010 (16)

Geometric parameters (Å, °)

O1—C11.212 (2)C9—H90.9300
O2—C51.424 (2)C10—C111.378 (3)
O2—C31.426 (2)C10—H100.9300
C1—C41.504 (3)C11—H110.9300
C1—C21.507 (3)C12—C171.377 (3)
C2—C181.509 (3)C12—C131.385 (3)
C2—C31.550 (3)C13—C141.380 (3)
C2—H20.9800C13—H130.9300
C3—C61.504 (3)C14—C151.366 (4)
C3—H30.9800C14—H140.9300
C4—C191.523 (3)C15—C161.367 (4)
C4—C51.542 (3)C15—H150.9300
C4—H40.9800C16—C171.379 (3)
C5—C121.501 (3)C16—H160.9300
C5—H50.9800C17—H170.9300
C6—C71.379 (3)C18—H18A0.9600
C6—C111.389 (3)C18—H18B0.9600
C7—C81.376 (3)C18—H18C0.9600
C7—H70.9300C19—H19A0.9600
C8—C91.368 (3)C19—H19B0.9600
C8—H80.9300C19—H19C0.9600
C9—C101.378 (3)
C5—O2—C3113.45 (15)C8—C9—H9120.2
O1—C1—C4122.1 (2)C10—C9—H9120.2
O1—C1—C2122.1 (2)C11—C10—C9120.2 (2)
C4—C1—C2115.83 (18)C11—C10—H10119.9
C1—C2—C18112.26 (18)C9—C10—H10119.9
C1—C2—C3107.24 (17)C10—C11—C6120.8 (2)
C18—C2—C3114.50 (19)C10—C11—H11119.6
C1—C2—H2107.5C6—C11—H11119.6
C18—C2—H2107.5C17—C12—C13118.1 (2)
C3—C2—H2107.5C17—C12—C5121.5 (2)
O2—C3—C6108.08 (16)C13—C12—C5120.3 (2)
O2—C3—C2109.72 (17)C14—C13—C12120.6 (2)
C6—C3—C2113.57 (18)C14—C13—H13119.7
O2—C3—H3108.4C12—C13—H13119.7
C6—C3—H3108.4C15—C14—C13120.5 (2)
C2—C3—H3108.4C15—C14—H14119.8
C1—C4—C19112.98 (19)C13—C14—H14119.8
C1—C4—C5111.25 (18)C14—C15—C16119.6 (3)
C19—C4—C5111.73 (19)C14—C15—H15120.2
C1—C4—H4106.8C16—C15—H15120.2
C19—C4—H4106.8C15—C16—C17120.2 (3)
C5—C4—H4106.8C15—C16—H16119.9
O2—C5—C12107.44 (17)C17—C16—H16119.9
O2—C5—C4111.32 (18)C12—C17—C16121.0 (2)
C12—C5—C4111.73 (18)C12—C17—H17119.5
O2—C5—H5108.8C16—C17—H17119.5
C12—C5—H5108.8C2—C18—H18A109.5
C4—C5—H5108.8C2—C18—H18B109.5
C7—C6—C11117.8 (2)H18A—C18—H18B109.5
C7—C6—C3120.8 (2)C2—C18—H18C109.5
C11—C6—C3121.3 (2)H18A—C18—H18C109.5
C8—C7—C6121.5 (2)H18B—C18—H18C109.5
C8—C7—H7119.2C4—C19—H19A109.5
C6—C7—H7119.2C4—C19—H19B109.5
C9—C8—C7120.0 (2)H19A—C19—H19B109.5
C9—C8—H8120.0C4—C19—H19C109.5
C7—C8—H8120.0H19A—C19—H19C109.5
C8—C9—C10119.6 (2)H19B—C19—H19C109.5
O1—C1—C2—C18−2.1 (3)O2—C3—C6—C11−34.7 (3)
C4—C1—C2—C18177.0 (2)C2—C3—C6—C1187.3 (3)
O1—C1—C2—C3−128.7 (2)C11—C6—C7—C8−0.6 (3)
C4—C1—C2—C350.3 (2)C3—C6—C7—C8178.4 (2)
C5—O2—C3—C6−170.35 (17)C6—C7—C8—C90.3 (4)
C5—O2—C3—C265.3 (2)C7—C8—C9—C100.4 (4)
C1—C2—C3—O2−57.9 (2)C8—C9—C10—C11−0.9 (4)
C18—C2—C3—O2176.88 (18)C9—C10—C11—C60.6 (4)
C1—C2—C3—C6−178.93 (18)C7—C6—C11—C100.1 (3)
C18—C2—C3—C655.8 (3)C3—C6—C11—C10−178.8 (2)
O1—C1—C4—C196.9 (3)O2—C5—C12—C17−125.9 (2)
C2—C1—C4—C19−172.2 (2)C4—C5—C12—C17111.7 (2)
O1—C1—C4—C5133.5 (2)O2—C5—C12—C1356.2 (3)
C2—C1—C4—C5−45.6 (3)C4—C5—C12—C13−66.2 (3)
C3—O2—C5—C12178.60 (17)C17—C12—C13—C140.0 (3)
C3—O2—C5—C4−58.8 (2)C5—C12—C13—C14177.9 (2)
C1—C4—C5—O246.6 (2)C12—C13—C14—C15−0.3 (4)
C19—C4—C5—O2173.93 (18)C13—C14—C15—C160.8 (4)
C1—C4—C5—C12166.75 (18)C14—C15—C16—C17−0.9 (4)
C19—C4—C5—C12−66.0 (2)C13—C12—C17—C160.0 (3)
O2—C3—C6—C7146.3 (2)C5—C12—C17—C16−178.0 (2)
C2—C3—C6—C7−91.7 (2)C15—C16—C17—C120.5 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2850).

References

  • Belakhov, V., Botoshansky, M. & Baasov, T. (2002). Acta Cryst. C58, m450–m452. [PubMed]
  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jose Kavitha, S., Sarangarajan, T. R., Thanikasalam, K., Panchanatheswaran, K. & Jeyaraman, R. (2003). Acta Cryst. E59, o463–o465.
  • Krishnamoorthy, B. S., Sarangarajan, T. R., Thanikasalam, K., Panchanatheswaran, K. & Jeyaraman, R. (2003). Acta Cryst. E59, o461–o462.
  • Kumar, R., Parmar, V. S. & Errington, W. (1999). Acta Cryst. C55, 561–563.
  • Noller, C. R. (1966). A Textbook of Organic Chemistry, 3rd ed, pp. 521–522. London: W. B. Saunders.
  • Parthiban, P., Umamatheswari, S., Doddi, A., Ramkumar, V. & Kabilan, S. (2007). Acta Cryst. E63, o4373.
  • Ray, S., Sarkhel, S., Maulik, P. R., Lobkovsky, E. & Clardy, J. (1998). Acta Cryst. C54, 134–136.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhao, B.-G. & Xu, J.-H. (2002). Acta Cryst. C58, o57–o58. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography