PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o446.
Published online 2009 February 4. doi:  10.1107/S1600536809003468
PMCID: PMC2968442

S-4-Chloro­phenyl 9,10-dihydro­acridine-9-carbothio­ate

Abstract

In tricyclic fragment of the title mol­ecule, C20H14ClNOS, the central 1,4-dihydro­pyridine ring adopts a boat conformation while the two benzene rings form a dihedral angle of 17.38 (5)°. In the crystal structure, weak inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains propagating along the b axis.

Related literature

For applications of acridine derivatives, see: Dodeigne et al. (2000 [triangle]); Ashmore et al. (2008 [triangle]); Zomer & Jacquemijns (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o446-scheme1.jpg

Experimental

Crystal data

  • C20H14ClNOS
  • M r = 351.83
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o446-efi1.jpg
  • a = 6.3171 (13) Å
  • b = 14.535 (3) Å
  • c = 18.169 (4) Å
  • β = 96.85 (3)°
  • V = 1656.4 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 293 (2) K
  • 0.15 × 0.09 × 0.07 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.963, T max = 0.971
  • 16788 measured reflections
  • 3788 independent reflections
  • 2287 reflections with I > 2σ(I)
  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.129
  • S = 1.04
  • 3788 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CrystalClear (Rigaku, 2000 [triangle]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003468/cv2506sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003468/cv2506Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Chunling Shi for the help with the crystal structure analysis

supplementary crystallographic information

Comment

The title compound, (I), was synthesized from S-4-chlorophenyl acridine-9-carbothioate catalyzed by zinc powder and glacial acetic acid using dichlormethane as solvent under the protection of nitrogen at room temperature. (I) is an important intermediate for the synthesis of acridine derivatives which are precursors of practically important chemiluminescent indicators and the chemiluminogenic fragments of chemiluminescent labels (Dodeigne et al., 2000; Ashmore et al., 2008; Zomer & Jacquemijns, 2001).

In (I) (Fig. 1), the 1,4-dihydropyridine ring (C1/C6/C7/C12/C13/N1) adopts a boat conformation: atoms C1, C6, C7 and C12 are coplanar, with atoms C13 and N1 derivating from the plane by 0.072 (9) and 0.300 (9) Å, respectively. The dihedral angle between the C1-C6 ring and C1/C6/C7/C12 plane is 11.43 (5)°. The dihedral angle between the C7-C12 plane and C1/C6/C7/C12 plane is 13.68 (5)°. In the crystal, weak intermolecular N—H···O hydrogen bonds (Table 1). link the molecules into chains propagated along b axis.

Experimental

All chemicals used(reagent grade) were commercially available. S-4-chlorophenyl acridine-9-carbothioate 5.58 g (0.016 mol) was dissolved by dichlormethane, zinc powder 6 g (0.09 mol) and glacial acetic acid 2 mL were added and stirred under the protection of nitrogen at room temperature for 45 min. The mixture was filtered, and evaporated the dissolvent. Colorless crystal of the title compound suitable for X-ray analysis was obtained by recrystallization using dichlormethane. 1HMNR(300 MHz, CDCl3): 5.22(1H, s), 6.80(1H, s), 6.81(2H, d), 6.94–6.98(2H, t), 7.18(2H, t), 7.23(2H, dd), 7.27(2H, dd), 7.30(2H,d).

Refinement

All H atoms were placed in calculated positions (N–H 0.86 Å, C—H 0.93–0.98 Å), and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq of the parent atom.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C20H14ClNOSF(000) = 728
Mr = 351.83Dx = 1.411 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12319 reflections
a = 6.3171 (13) Åθ = 3.0–27.5°
b = 14.535 (3) ŵ = 0.36 mm1
c = 18.169 (4) ÅT = 293 K
β = 96.85 (3)°Block, colorless
V = 1656.4 (6) Å30.15 × 0.09 × 0.07 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer3788 independent reflections
Radiation source: fine-focus sealed tube2287 reflections with I > 2σ(I)
graphiteRint = 0.069
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.963, Tmax = 0.971k = −18→18
16788 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0388P)2 + 0.6284P] where P = (Fo2 + 2Fc2)/3
3788 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.79621 (14)0.07317 (5)0.13309 (4)0.0622 (3)
Cl10.31742 (17)−0.27324 (6)−0.00643 (5)0.0881 (3)
O10.9837 (3)−0.05520 (12)0.21991 (11)0.0601 (6)
N10.7547 (4)0.24449 (14)0.27564 (13)0.0506 (6)
H1A0.64580.28040.26930.061*
C11.0780 (4)0.19172 (17)0.23159 (14)0.0408 (6)
C21.2502 (5)0.21117 (19)0.19322 (16)0.0527 (7)
H2A1.35700.16740.19190.063*
C31.2669 (5)0.2938 (2)0.15705 (17)0.0630 (9)
H3A1.38370.30560.13180.076*
C41.1082 (5)0.3588 (2)0.15878 (17)0.0597 (8)
H4A1.11620.41410.13350.072*
C50.9387 (5)0.34239 (18)0.19761 (16)0.0530 (7)
H5A0.83370.38700.19900.064*
C60.9226 (4)0.25965 (17)0.23493 (15)0.0419 (6)
C70.7560 (4)0.17308 (17)0.32648 (14)0.0441 (6)
C80.6100 (5)0.1711 (2)0.37797 (16)0.0584 (8)
H8A0.50620.21660.37710.070*
C90.6178 (6)0.1023 (2)0.43034 (18)0.0703 (9)
H9A0.51900.10160.46440.084*
C100.7702 (6)0.0346 (2)0.43274 (17)0.0660 (9)
H10A0.7774−0.01090.46890.079*
C110.9126 (5)0.03501 (19)0.38071 (16)0.0534 (7)
H11A1.0146−0.01130.38180.064*
C120.9071 (4)0.10270 (16)0.32687 (14)0.0412 (6)
C131.0523 (4)0.09894 (16)0.26639 (14)0.0397 (6)
H13A1.19310.07780.28840.048*
C140.9580 (4)0.02581 (17)0.21057 (14)0.0392 (6)
C150.6677 (5)−0.02802 (18)0.09621 (15)0.0472 (7)
C160.4798 (5)−0.0559 (2)0.12017 (17)0.0616 (8)
H16A0.4246−0.02310.15750.074*
C170.3721 (5)−0.1317 (2)0.08959 (19)0.0627 (8)
H17A0.2452−0.15050.10610.075*
C180.4549 (5)−0.17925 (19)0.03436 (16)0.0525 (7)
C190.6430 (5)−0.15349 (19)0.01005 (16)0.0590 (8)
H19A0.6984−0.1867−0.02700.071*
C200.7491 (5)−0.07752 (19)0.04145 (16)0.0545 (7)
H20A0.8773−0.05950.02540.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0851 (6)0.0375 (4)0.0563 (5)−0.0065 (4)−0.0236 (4)−0.0005 (3)
Cl10.1100 (8)0.0614 (5)0.0877 (7)−0.0439 (5)−0.0092 (6)−0.0036 (4)
O10.0727 (14)0.0352 (10)0.0672 (13)0.0101 (9)−0.0133 (11)−0.0050 (9)
N10.0417 (13)0.0450 (13)0.0655 (16)0.0110 (11)0.0080 (12)0.0063 (11)
C10.0369 (14)0.0391 (14)0.0446 (15)−0.0052 (11)−0.0031 (12)−0.0110 (12)
C20.0458 (17)0.0481 (16)0.0647 (19)−0.0078 (13)0.0086 (14)−0.0177 (14)
C30.065 (2)0.060 (2)0.067 (2)−0.0258 (17)0.0160 (17)−0.0148 (16)
C40.071 (2)0.0448 (16)0.063 (2)−0.0156 (16)0.0051 (17)−0.0029 (14)
C50.0556 (18)0.0400 (15)0.0613 (19)−0.0007 (13)−0.0022 (15)−0.0024 (13)
C60.0426 (15)0.0381 (14)0.0433 (15)−0.0049 (12)−0.0021 (12)−0.0067 (11)
C70.0476 (16)0.0404 (14)0.0436 (15)0.0016 (12)0.0026 (13)−0.0078 (12)
C80.059 (2)0.0567 (18)0.062 (2)0.0092 (15)0.0154 (16)−0.0090 (15)
C90.083 (2)0.072 (2)0.060 (2)−0.002 (2)0.0257 (18)−0.0017 (18)
C100.086 (2)0.0584 (19)0.054 (2)−0.0017 (18)0.0119 (18)0.0041 (15)
C110.0609 (19)0.0470 (16)0.0505 (17)0.0069 (14)−0.0002 (15)−0.0012 (13)
C120.0428 (15)0.0378 (13)0.0415 (15)−0.0010 (12)−0.0014 (12)−0.0070 (11)
C130.0329 (14)0.0406 (14)0.0443 (15)0.0044 (11)−0.0012 (11)−0.0061 (11)
C140.0372 (14)0.0370 (14)0.0434 (15)0.0003 (11)0.0050 (11)−0.0028 (11)
C150.0544 (18)0.0388 (14)0.0444 (16)−0.0044 (13)−0.0102 (13)0.0012 (12)
C160.072 (2)0.0538 (19)0.060 (2)−0.0016 (16)0.0084 (17)−0.0086 (15)
C170.0531 (19)0.0609 (19)0.076 (2)−0.0119 (16)0.0141 (17)0.0053 (17)
C180.0607 (19)0.0430 (15)0.0500 (17)−0.0166 (14)−0.0097 (14)0.0069 (13)
C190.078 (2)0.0481 (17)0.0500 (18)−0.0111 (16)0.0060 (16)−0.0104 (14)
C200.0545 (19)0.0500 (17)0.0586 (18)−0.0112 (14)0.0055 (15)−0.0007 (14)

Geometric parameters (Å, °)

S1—C151.772 (3)C8—H8A0.9300
S1—C141.777 (3)C9—C101.373 (4)
Cl1—C181.737 (3)C9—H9A0.9300
O1—C141.198 (3)C10—C111.380 (4)
N1—C61.381 (3)C10—H10A0.9300
N1—C71.389 (3)C11—C121.385 (4)
N1—H1A0.8600C11—H11A0.9300
C1—C21.389 (4)C12—C131.514 (4)
C1—C61.399 (4)C13—C141.539 (3)
C1—C131.506 (3)C13—H13A0.9800
C2—C31.380 (4)C15—C161.373 (4)
C2—H2A0.9300C15—C201.376 (4)
C3—C41.380 (4)C16—C171.378 (4)
C3—H3A0.9300C16—H16A0.9300
C4—C51.371 (4)C17—C181.372 (4)
C4—H4A0.9300C17—H17A0.9300
C5—C61.390 (4)C18—C191.368 (4)
C5—H5A0.9300C19—C201.380 (4)
C7—C81.391 (4)C19—H19A0.9300
C7—C121.398 (3)C20—H20A0.9300
C8—C91.378 (4)
C15—S1—C1499.92 (12)C10—C11—C12121.6 (3)
C6—N1—C7122.1 (2)C10—C11—H11A119.2
C6—N1—H1A119.0C12—C11—H11A119.2
C7—N1—H1A119.0C11—C12—C7118.9 (3)
C2—C1—C6118.3 (2)C11—C12—C13121.4 (2)
C2—C1—C13121.5 (2)C7—C12—C13119.7 (2)
C6—C1—C13120.2 (2)C1—C13—C12112.2 (2)
C3—C2—C1121.7 (3)C1—C13—C14113.2 (2)
C3—C2—H2A119.2C12—C13—C14106.4 (2)
C1—C2—H2A119.2C1—C13—H13A108.3
C2—C3—C4119.2 (3)C12—C13—H13A108.3
C2—C3—H3A120.4C14—C13—H13A108.3
C4—C3—H3A120.4O1—C14—C13123.4 (2)
C5—C4—C3120.4 (3)O1—C14—S1123.3 (2)
C5—C4—H4A119.8C13—C14—S1113.29 (17)
C3—C4—H4A119.8C16—C15—C20119.1 (3)
C4—C5—C6120.6 (3)C16—C15—S1119.9 (2)
C4—C5—H5A119.7C20—C15—S1120.9 (2)
C6—C5—H5A119.7C15—C16—C17120.8 (3)
N1—C6—C5120.3 (2)C15—C16—H16A119.6
N1—C6—C1119.9 (2)C17—C16—H16A119.6
C5—C6—C1119.8 (3)C18—C17—C16119.0 (3)
N1—C7—C8120.7 (2)C18—C17—H17A120.5
N1—C7—C12120.0 (2)C16—C17—H17A120.5
C8—C7—C12119.3 (3)C19—C18—C17121.3 (3)
C9—C8—C7120.5 (3)C19—C18—Cl1119.1 (2)
C9—C8—H8A119.8C17—C18—Cl1119.6 (2)
C7—C8—H8A119.8C18—C19—C20118.9 (3)
C10—C9—C8120.6 (3)C18—C19—H19A120.5
C10—C9—H9A119.7C20—C19—H19A120.5
C8—C9—H9A119.7C15—C20—C19120.8 (3)
C9—C10—C11119.1 (3)C15—C20—H20A119.6
C9—C10—H10A120.4C19—C20—H20A119.6
C11—C10—H10A120.4
C6—C1—C2—C3−2.0 (4)C2—C1—C13—C12159.2 (2)
C13—C1—C2—C3175.6 (2)C6—C1—C13—C12−23.3 (3)
C1—C2—C3—C4−0.2 (4)C2—C1—C13—C14−80.3 (3)
C2—C3—C4—C51.7 (4)C6—C1—C13—C1497.2 (3)
C3—C4—C5—C6−0.9 (4)C11—C12—C13—C1−159.6 (2)
C7—N1—C6—C5−165.4 (2)C7—C12—C13—C123.8 (3)
C7—N1—C6—C114.2 (4)C11—C12—C13—C1476.1 (3)
C4—C5—C6—N1178.2 (3)C7—C12—C13—C14−100.5 (3)
C4—C5—C6—C1−1.4 (4)C1—C13—C14—O1156.3 (3)
C2—C1—C6—N1−176.8 (2)C12—C13—C14—O1−80.0 (3)
C13—C1—C6—N15.6 (4)C1—C13—C14—S1−26.6 (3)
C2—C1—C6—C52.8 (4)C12—C13—C14—S197.1 (2)
C13—C1—C6—C5−174.8 (2)C15—S1—C14—O111.1 (3)
C6—N1—C7—C8165.7 (3)C15—S1—C14—C13−166.00 (19)
C6—N1—C7—C12−13.5 (4)C14—S1—C15—C1689.1 (2)
N1—C7—C8—C9−177.2 (3)C14—S1—C15—C20−93.6 (2)
C12—C7—C8—C92.0 (4)C20—C15—C16—C17−0.6 (4)
C7—C8—C9—C100.2 (5)S1—C15—C16—C17176.8 (2)
C8—C9—C10—C11−1.7 (5)C15—C16—C17—C18−0.3 (5)
C9—C10—C11—C120.9 (5)C16—C17—C18—C191.0 (5)
C10—C11—C12—C71.3 (4)C16—C17—C18—Cl1−178.3 (2)
C10—C11—C12—C13−175.3 (3)C17—C18—C19—C20−0.8 (4)
N1—C7—C12—C11176.5 (2)Cl1—C18—C19—C20178.5 (2)
C8—C7—C12—C11−2.7 (4)C16—C15—C20—C190.8 (4)
N1—C7—C12—C13−6.9 (4)S1—C15—C20—C19−176.6 (2)
C8—C7—C12—C13173.9 (2)C18—C19—C20—C15−0.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.543.283 (3)145

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2506).

References

  • Ashmore, J., Bishop, R., Craig, D. C. & Scudder, M. L. (2008). Acta Cryst. E64, o1136. [PMC free article] [PubMed]
  • Dodeigne, C., Thunus, L. & Lejeune, R. (2000). Talanta, 51, 415–439. [PubMed]
  • Rigaku (2000). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2003). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography