PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m311–m312.
Published online 2009 February 21. doi:  10.1107/S1600536809005303
PMCID: PMC2968436

Redetermination of tris­(N,N-diethyl­dithio­carbamato)anti­mony(III)

Abstract

The title compound, [Sb(C5H10NS2)3], was synthesized from Sb2O3, diethyl­amine, carbon dis­ulfide, hydro­chloric acid and sodium hydroxide. The structure has been published previously but H atoms were not included in the model [Raston & White (1976 [triangle]). Chem. Soc. Dalton Trans. p. 791]. The current determination has significantly higher precision than the original work. The complex has three ligands. The Sb atom is coordinated by three bidentate diethyl­dithio­carbamate groups, two in an almost planar fashion and the third perpendicular to that plane with a dihedral angle of 86.429 (13)°. One ethyl group is disordered over two positions of equal occupancy.

Related literature

For applications of dithio­carbamates, see: Fujii & Yoshimura (2000 [triangle]); Stary et al. (1992 [triangle]); Pazukhina et al. (1997 [triangle]). For the extraction efficiency of dithio­carbamate complexes in the presence of neutral N, S, O and P donor mol­ecules, see: Ooi & Fernando (1967 [triangle]). For nitro­gen donor adducts of dithio­carbamate complexes, see: O’Brien et al. (1992 [triangle], 1998 [triangle]); Chunggaze et al. (1997 [triangle]); Bessergenev et al. (1996 [triangle], 1997 [triangle]); Hovel (1975 [triangle]). For complexes with post-transition metals, see: Coucouvanis (1979 [triangle]) and for complexes involving Te(IV), Te(II) and Se(II) centres, see: Husebye & Svaeren (1973 [triangle]); Rout et al. (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m311-scheme1.jpg

Experimental

Crystal data

  • [Sb(C5H10NS2)3]
  • M r = 566.53
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m311-efi1.jpg
  • a = 12.6454 (2) Å
  • b = 13.6217 (2) Å
  • c = 14.6731 (2) Å
  • β = 99.858 (1)°
  • V = 2490.15 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.62 mm−1
  • T = 296 K
  • 0.26 × 0.21 × 0.21 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.679, T max = 0.817 (expected range = 0.591–0.712)
  • 24761 measured reflections
  • 5746 independent reflections
  • 4947 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.059
  • S = 1.00
  • 5746 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005303/fi2068sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005303/fi2068Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the Chinese Ministry of Science and Technology (2005BA316C) and the Key Laboratory of Enviromentally-Friendly Polymer Materials of Anhui Province.

supplementary crystallographic information

Comment

Dithiocarbamates have found wide practical application as antioxidants and lubricants, as vulcanizing and NO-trapping agents (Fujii et al., 2000), as agents for the froth flotation process of sulfide minerals and for the liquid-liquid extraction of transition metals (Stary et al., 1992; Pazukhina et al., 1997). It has also been found that the extraction efficiency of dithiocarbamate complexes rises in the presence of neutral N, S, O, P-donor molecules, which could potentially imply formation of adducts (Ooi et al., 1967). Besides that, nitrogen donor adducts of dithiocarbamate complexes are also widely used in the preparation of thin semiconductor (O'Brien et al., 1992; Chunggaze et al., 1997; O'Brien et al., 1998) and electroluminescent (Bessergenev et al., 1996; Bessergenev et al., 1997) films of transition metal sulfides, the basis of electronics and solar cell technology (Hovel, 1975). The dithiocarbamate anion (R1R2NCS2-=I-) is known to be a strong nucleophile and to form stable complexs with many post-transition metals (Coucouvanis, 1979). Thus, complexes involving Te(IV), Te(II) and Se(II) centres have been reported, and structural studies on these have shown the presence of bidentate chelating ligands (Husebye et al., 1973; Rout et al., 1983). We have synthesized the title compound, C15H30N3S6Sb, and report here its crystal structure. The structure had been reported earlier (Raston & White, 1976), The syntheses and application of the crystal haven't been described in that paper. They mentioned simply that they examined samples of the antimony derivatives recrystallized from benzene solution. The crystal is monoclinic, Z=4, a=14.665 (5) Å, b=13.619 (5)Å, c=12.642 (4)Å, β=99.86 (4)°. These data of the crystal is similar to our crystal.but no hydrogen atoms were included in their structure model. The molecular structure and the atom-numbering scheme of the title compound are shown in Fig. 1. In the molecule, all bond lengths and angles agree well with values found in literature Table 1. The Sb atom is coordinated by three bidentate diethyldithiocarbamato groups, two groups in an almost planar fashion, the thirs group is perpendicular to that plane with a dihedral angle of 86.429 (13)°.

Experimental

Water (200 ml), sodium hydroxide (4 g, 0.1 mol) and diethylamine (7.3 g, 0.1 mol) were added to a three-neck flask in an icewater bath under stirring. Carbon disulfide (7.8 g, 0.1 mol) was added dropwise into this solution during twenty minutes and the mixture was allowed to react for four hours yielding a light yellow liquid. Antimony trioxide (4.6 g, 0.016 mol) was dissolved in hydrochloric acid. The solution was added dropwise into the diethyl dithiocarbamate natrium under stirring and it was confirmed that the resulting solution was acidic. From this solution, a yellow deposit was obtained. It was collected by vacuum filtration, washed with a large amount of water and dried in air. Yellow single crystals were obtained after two weeks upon evaporation of a solution of the reaction product in a mixture of chloroform (5 ml) and methanol (30 ml).

Refinement

Atom C8 and C9 were found to be disordered over two positions with the same site-occupancy factors (0.50/0.50). All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97, 0.96(–CH3) Å and Uiso(H) = 1.2Ueq(C), 1.5 Ueq(–CH3), respectively.

Figures

Fig. 1.
The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[Sb(C5H10NS2)3]F(000) = 1152
Mr = 566.53Dx = 1.511 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9907 reflections
a = 12.6454 (2) Åθ = 2.2–27.5°
b = 13.6217 (2) ŵ = 1.62 mm1
c = 14.6731 (2) ÅT = 296 K
β = 99.858 (1)°Block, yellow
V = 2490.15 (6) Å30.26 × 0.21 × 0.21 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer5746 independent reflections
Radiation source: fine-focus sealed tube4947 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 27.6°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −16→16
Tmin = 0.679, Tmax = 0.817k = −17→17
24761 measured reflectionsl = −18→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.059w = 1/[σ2(Fo2) + (0.0366P)2 + 0.1807P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.003
5746 reflectionsΔρmax = 0.38 e Å3
253 parametersΔρmin = −0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0072 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Sb10.664203 (10)0.489969 (8)0.544433 (8)0.03895 (6)
S50.82733 (4)0.47481 (3)0.47217 (3)0.04547 (12)
S20.59116 (4)0.32605 (3)0.46160 (3)0.04974 (12)
S10.55799 (5)0.51072 (3)0.35546 (4)0.04951 (13)
S30.73733 (4)0.34808 (3)0.65900 (3)0.04951 (12)
S60.75061 (4)0.67918 (4)0.48886 (4)0.05794 (14)
S40.78957 (5)0.55135 (4)0.71886 (3)0.05585 (13)
N10.88457 (11)0.62440 (10)0.37638 (9)0.0413 (3)
N30.81757 (14)0.39580 (12)0.83190 (10)0.0558 (4)
N20.50310 (13)0.33416 (11)0.28478 (10)0.0495 (4)
C20.89233 (16)0.72713 (14)0.34826 (13)0.0503 (4)
H2A0.82740.76170.35600.060*
H2B0.89840.72970.28330.060*
C50.82576 (13)0.59892 (13)0.43964 (11)0.0397 (4)
C60.54573 (13)0.38630 (13)0.35802 (12)0.0413 (4)
C70.78502 (15)0.43078 (14)0.74662 (12)0.0457 (4)
C30.94447 (15)0.55426 (14)0.32952 (12)0.0495 (4)
H3A0.96520.49860.36990.059*
H3B1.00940.58520.31680.059*
C100.82177 (18)0.29025 (16)0.85339 (14)0.0616 (6)
H10A0.76190.25750.81520.074*
H10B0.81460.28100.91760.074*
C130.49020 (17)0.22693 (15)0.28767 (15)0.0596 (5)
H13A0.55020.19910.32980.071*
H13B0.49130.20010.22660.071*
C120.38672 (19)0.19757 (17)0.31864 (19)0.0797 (7)
H12A0.38800.21890.38120.120*
H12B0.37910.12750.31540.120*
H12C0.32730.22770.27900.120*
C140.46194 (18)0.38151 (18)0.19505 (13)0.0669 (6)
H14A0.43760.44730.20600.080*
H14B0.40080.34460.16350.080*
C10.98809 (18)0.77734 (16)0.40466 (15)0.0672 (6)
H1A0.97860.78090.46810.101*
H1B0.99470.84250.38120.101*
H1C1.05190.74060.40050.101*
C40.8789 (3)0.51864 (19)0.24026 (17)0.0816 (8)
H4A0.81820.48220.25330.122*
H4B0.92230.47710.20880.122*
H4C0.85440.57390.20180.122*
C110.9249 (2)0.24437 (17)0.83695 (16)0.0733 (7)
H11A0.92620.24270.77170.110*
H11B0.93000.17870.86100.110*
H11C0.98450.28240.86760.110*
C150.5461 (2)0.3870 (2)0.13415 (16)0.0965 (9)
H15A0.60620.42440.16470.145*
H15B0.51650.41820.07680.145*
H15C0.56930.32190.12210.145*
C90.8390 (10)0.4544 (13)0.9120 (12)0.072 (3)0.50
H9A0.85340.52050.89270.087*0.50
H9B0.90480.43030.94920.087*0.50
C80.7567 (14)0.4614 (9)0.9733 (10)0.104 (4)0.50
H8A0.69170.48860.93910.156*0.50
H8B0.78280.50311.02500.156*0.50
H8C0.74250.39710.99520.156*0.50
C9'0.8734 (10)0.4662 (11)0.9077 (10)0.060 (2)0.50
H9'10.93150.43250.94730.072*0.50
H9'20.90310.52200.87970.072*0.50
C8'0.7900 (13)0.5005 (9)0.9641 (9)0.101 (4)0.50
H8'10.73370.53490.92460.151*0.50
H8'20.82320.54361.01240.151*0.50
H8'30.76050.44470.99080.151*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sb10.04014 (8)0.03772 (8)0.04160 (8)−0.00181 (4)0.01435 (6)−0.00116 (4)
S50.0466 (3)0.0374 (2)0.0571 (3)0.00373 (19)0.0225 (2)0.00350 (19)
S20.0617 (3)0.0378 (2)0.0487 (3)−0.0062 (2)0.0063 (2)0.00249 (18)
S10.0591 (3)0.0388 (2)0.0515 (3)0.0014 (2)0.0121 (2)0.00393 (18)
S30.0582 (3)0.0423 (2)0.0471 (3)−0.0066 (2)0.0065 (2)0.00099 (19)
S60.0706 (3)0.0388 (3)0.0737 (3)0.0029 (2)0.0387 (3)−0.0037 (2)
S40.0677 (3)0.0433 (3)0.0550 (3)−0.0018 (2)0.0059 (2)−0.0053 (2)
N10.0389 (8)0.0427 (8)0.0442 (8)−0.0013 (6)0.0123 (6)0.0028 (6)
N30.0663 (11)0.0571 (10)0.0432 (9)−0.0020 (8)0.0072 (8)0.0013 (7)
N20.0515 (9)0.0483 (9)0.0484 (9)0.0001 (7)0.0078 (7)−0.0079 (7)
C20.0534 (11)0.0477 (10)0.0521 (10)−0.0010 (9)0.0161 (9)0.0103 (8)
C50.0378 (9)0.0376 (9)0.0450 (9)−0.0025 (7)0.0110 (7)−0.0014 (7)
C60.0378 (9)0.0430 (9)0.0447 (9)0.0016 (7)0.0117 (8)−0.0021 (7)
C70.0430 (10)0.0503 (11)0.0451 (10)−0.0012 (8)0.0116 (8)−0.0015 (8)
C30.0456 (10)0.0537 (11)0.0538 (10)0.0049 (9)0.0219 (9)0.0023 (9)
C100.0716 (14)0.0657 (13)0.0491 (11)−0.0094 (11)0.0145 (10)0.0162 (10)
C130.0644 (14)0.0482 (11)0.0667 (12)−0.0050 (10)0.0128 (10)−0.0186 (10)
C120.0692 (15)0.0656 (15)0.1058 (19)−0.0162 (13)0.0191 (14)−0.0159 (14)
C140.0747 (15)0.0742 (15)0.0472 (11)0.0074 (12)−0.0027 (10)−0.0055 (10)
C10.0729 (15)0.0589 (13)0.0704 (14)−0.0189 (11)0.0138 (12)0.0004 (10)
C40.098 (2)0.0876 (18)0.0591 (15)0.0177 (15)0.0135 (14)−0.0195 (12)
C110.0946 (19)0.0606 (14)0.0697 (14)0.0029 (13)0.0287 (13)0.0149 (11)
C150.132 (2)0.105 (2)0.0598 (14)0.0332 (19)0.0349 (16)0.0051 (13)
C90.073 (8)0.074 (6)0.062 (5)−0.013 (5)−0.010 (5)0.003 (4)
C80.158 (11)0.104 (8)0.057 (4)0.014 (7)0.037 (5)−0.013 (5)
C9'0.072 (7)0.060 (4)0.042 (3)−0.011 (4)−0.005 (4)−0.008 (3)
C8'0.138 (11)0.114 (10)0.052 (4)0.027 (7)0.020 (5)−0.007 (5)

Geometric parameters (Å, °)

Sb1—S52.4842 (5)C13—H13B0.9700
Sb1—S32.6238 (5)C12—H12A0.9600
Sb1—S22.6328 (5)C12—H12B0.9600
Sb1—S12.8805 (6)C12—H12C0.9600
Sb1—S42.8938 (5)C14—C151.504 (3)
S5—C51.7559 (17)C14—H14A0.9700
S2—C61.7362 (18)C14—H14B0.9700
S1—C61.7028 (18)C1—H1A0.9600
S3—C71.7378 (19)C1—H1B0.9600
S6—C51.6896 (17)C1—H1C0.9600
S4—C71.696 (2)C4—H4A0.9600
N1—C51.331 (2)C4—H4B0.9600
N1—C31.462 (2)C4—H4C0.9600
N1—C21.467 (2)C11—H11A0.9600
N3—C71.336 (2)C11—H11B0.9600
N3—C91.408 (17)C11—H11C0.9600
N3—C101.471 (3)C15—H15A0.9600
N3—C9'1.545 (13)C15—H15B0.9600
N2—C61.324 (2)C15—H15C0.9600
N2—C131.471 (2)C9—C81.49 (2)
N2—C141.478 (2)C9—H9A0.9700
C2—C11.509 (3)C9—H9B0.9700
C2—H2A0.9700C8—H8A0.9600
C2—H2B0.9700C8—H8B0.9600
C3—C41.505 (3)C8—H8C0.9600
C3—H3A0.9700C9'—C8'1.52 (2)
C3—H3B0.9700C9'—H9'10.9700
C10—C111.503 (3)C9'—H9'20.9700
C10—H10A0.9700C8'—H8'10.9600
C10—H10B0.9700C8'—H8'20.9600
C13—C121.511 (3)C8'—H8'30.9600
C13—H13A0.9700
S5—Sb1—S389.136 (16)N2—C13—H13B109.2
S5—Sb1—S289.071 (16)C12—C13—H13B109.2
S3—Sb1—S274.239 (14)H13A—C13—H13B107.9
S5—Sb1—S183.205 (17)C13—C12—H12A109.5
S3—Sb1—S1138.085 (14)C13—C12—H12B109.5
S2—Sb1—S164.525 (14)H12A—C12—H12B109.5
S5—Sb1—S491.853 (17)C13—C12—H12C109.5
S3—Sb1—S464.313 (15)H12A—C12—H12C109.5
S2—Sb1—S4138.518 (15)H12B—C12—H12C109.5
S1—Sb1—S4156.580 (15)N2—C14—C15111.95 (18)
C5—S5—Sb193.69 (5)N2—C14—H14A109.2
C6—S2—Sb192.32 (6)C15—C14—H14A109.2
C6—S1—Sb184.85 (6)N2—C14—H14B109.2
C7—S3—Sb192.07 (7)C15—C14—H14B109.2
C7—S4—Sb184.06 (6)H14A—C14—H14B107.9
C5—N1—C3123.63 (15)C2—C1—H1A109.5
C5—N1—C2121.14 (15)C2—C1—H1B109.5
C3—N1—C2115.22 (14)H1A—C1—H1B109.5
C7—N3—C9124.3 (8)C2—C1—H1C109.5
C7—N3—C10122.90 (16)H1A—C1—H1C109.5
C9—N3—C10112.4 (7)H1B—C1—H1C109.5
C7—N3—C9'118.9 (6)C3—C4—H4A109.5
C9—N3—C9'17.9 (8)C3—C4—H4B109.5
C10—N3—C9'117.2 (6)H4A—C4—H4B109.5
C6—N2—C13122.77 (16)C3—C4—H4C109.5
C6—N2—C14121.42 (16)H4A—C4—H4C109.5
C13—N2—C14115.78 (15)H4B—C4—H4C109.5
N1—C2—C1111.36 (16)C10—C11—H11A109.5
N1—C2—H2A109.4C10—C11—H11B109.5
C1—C2—H2A109.4H11A—C11—H11B109.5
N1—C2—H2B109.4C10—C11—H11C109.5
C1—C2—H2B109.4H11A—C11—H11C109.5
H2A—C2—H2B108.0H11B—C11—H11C109.5
N1—C5—S6123.48 (13)C14—C15—H15A109.5
N1—C5—S5117.32 (12)C14—C15—H15B109.5
S6—C5—S5119.20 (9)H15A—C15—H15B109.5
N2—C6—S1122.83 (14)C14—C15—H15C109.5
N2—C6—S2119.00 (14)H15A—C15—H15C109.5
S1—C6—S2118.17 (10)H15B—C15—H15C109.5
N3—C7—S4123.55 (14)N3—C9—C8119.0 (9)
N3—C7—S3118.29 (15)N3—C9—H9A107.6
S4—C7—S3118.16 (10)C8—C9—H9A107.6
N1—C3—C4111.55 (17)N3—C9—H9B107.6
N1—C3—H3A109.3C8—C9—H9B107.6
C4—C3—H3A109.3H9A—C9—H9B107.0
N1—C3—H3B109.3C8'—C9'—N3107.9 (9)
C4—C3—H3B109.3C8'—C9'—H9'1110.1
H3A—C3—H3B108.0N3—C9'—H9'1110.1
N3—C10—C11111.87 (17)C8'—C9'—H9'2110.1
N3—C10—H10A109.2N3—C9'—H9'2110.1
C11—C10—H10A109.2H9'1—C9'—H9'2108.4
N3—C10—H10B109.2C9'—C8'—H8'1109.5
C11—C10—H10B109.2C9'—C8'—H8'2109.5
H10A—C10—H10B107.9H8'1—C8'—H8'2109.5
N2—C13—C12112.18 (17)C9'—C8'—H8'3109.5
N2—C13—H13A109.2H8'1—C8'—H8'3109.5
C12—C13—H13A109.2H8'2—C8'—H8'3109.5
S3—Sb1—S5—C5−150.76 (6)C14—N2—C6—S2179.31 (14)
S2—Sb1—S5—C5134.99 (6)Sb1—S1—C6—N2−176.81 (15)
S1—Sb1—S5—C570.53 (6)Sb1—S1—C6—S23.31 (9)
S4—Sb1—S5—C5−86.50 (6)Sb1—S2—C6—N2176.50 (13)
S5—Sb1—S2—C6−80.83 (6)Sb1—S2—C6—S1−3.61 (10)
S3—Sb1—S2—C6−170.20 (6)C9—N3—C7—S413.3 (6)
S1—Sb1—S2—C62.08 (6)C10—N3—C7—S4−174.62 (15)
S4—Sb1—S2—C6−172.58 (6)C9'—N3—C7—S4−6.7 (6)
S5—Sb1—S1—C690.09 (6)C9—N3—C7—S3−167.7 (6)
S3—Sb1—S1—C69.03 (7)C10—N3—C7—S34.3 (3)
S2—Sb1—S1—C6−2.13 (6)C9'—N3—C7—S3172.3 (6)
S4—Sb1—S1—C6168.95 (6)Sb1—S4—C7—N3−170.09 (16)
S5—Sb1—S3—C799.33 (6)Sb1—S4—C7—S310.93 (9)
S2—Sb1—S3—C7−171.40 (6)Sb1—S3—C7—N3168.95 (14)
S1—Sb1—S3—C7178.14 (6)Sb1—S3—C7—S4−12.02 (10)
S4—Sb1—S3—C76.85 (6)C5—N1—C3—C492.1 (2)
S5—Sb1—S4—C7−95.21 (6)C2—N1—C3—C4−87.3 (2)
S3—Sb1—S4—C7−7.06 (6)C7—N3—C10—C1185.0 (2)
S2—Sb1—S4—C7−4.51 (7)C9—N3—C10—C11−102.1 (6)
S1—Sb1—S4—C7−172.31 (7)C9'—N3—C10—C11−83.1 (6)
C5—N1—C2—C192.8 (2)C6—N2—C13—C1286.1 (2)
C3—N1—C2—C1−87.77 (19)C14—N2—C13—C12−91.9 (2)
C3—N1—C5—S6−176.11 (13)C6—N2—C14—C1592.1 (2)
C2—N1—C5—S63.2 (2)C13—N2—C14—C15−89.8 (2)
C3—N1—C5—S53.6 (2)C7—N3—C9—C8100.7 (13)
C2—N1—C5—S5−177.00 (13)C10—N3—C9—C8−72.1 (15)
Sb1—S5—C5—N1−163.57 (12)C9'—N3—C9—C8178 (5)
Sb1—S5—C5—S616.20 (10)C7—N3—C9'—C8'98.3 (9)
C13—N2—C6—S1−178.50 (14)C9—N3—C9'—C8'−15 (4)
C14—N2—C6—S1−0.6 (3)C10—N3—C9'—C8'−93.1 (10)
C13—N2—C6—S21.4 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2068).

References

  • Bessergenev, V. G., Belyi, V. I., Rastorguev, A. A., Ivanova, E. N., Kovalevskaya, Y. A., Larionov, S. V., Zemskova, S. M., Kirichenko, V. N., Nadolinnyi, V. A. & Gromilov, S. A. (1996). Thin Solid Films, 279, 135–139.
  • Bessergenev, V. G., Ivanova, E. N., Kovalevskaya, Y. A., Vasilieva, I. G., Varand, V. L., Zemskova, S. M., Larionov, S. V., Kolesov, B. A., Ayupov, B. M. & Logvinenko, V. A. (1997). Mater. Res. Bull. 32, 1403–1410.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chunggaze, M., Malik, M. A. & O’Brien, P. (1997). Adv. Mater. Opt. Electron.7, 311–316.
  • Coucouvanis, D. (1979). Prog. Inorg. Chem.26, 301–469.
  • Fujii, S. & Yoshimura, T. (2000). Coord. Chem. Rev.198, 89–99.
  • Hovel, H. J. (1975). Semiconductors/Semimetals: Solar Cells, Vol. 11, pp. 203–207. New York: Academic Press.
  • Husebye, S. & Svaeren, S. E. (1973). Acta Chem Scand.27, 763–778.
  • O’Brien, P., Bruce, D. W. & O’Hare, D. (1992). Inorganic Materials, pp. 491–495. New York: Wiley.
  • O’Brien, P., Otway, D. J. & Walsh, J. R. (1998). Thin Solid Films, 315, 57–61.
  • Ooi, Sh. & Fernando, Q. (1967). Inorg. Chem.6, 1558–1562.
  • Pazukhina, Y. E., Isakova, N. V., Nagy, V. & Petrukhin, O. M. (1997). Solvent Extr. Ion Exch.15, 777–785.
  • Raston, C. & White, A. (1976). J. Chem. Soc. Dalton Trans pp. 791–794.
  • Rout, G. C., Seshasayee, M., Radha, K. & Aravamudan, G. (1983). Acta Cryst. C39, 1021–1023.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stary, J., Kratzer, K. & Radioanal, J. (1992). Nucl. Chem. Lett.165, 137–143.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography