PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o558.
Published online 2009 February 21. doi:  10.1107/S1600536809005418
PMCID: PMC2968430

Methyl 5-meth­oxy-2-nitro-4-[3-(piperidin-1-yl)prop­oxy]benzoate

Abstract

In the mol­ecule of the title compound, C17H24N2O6, the dihedral angle between the four coplanar atoms of the piperidine ring and the benzene ring is 39.2 (1)°.

Related literature

For general background, see: Knesl et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o558-scheme1.jpg

Experimental

Crystal data

  • C17H24N2O6
  • M r = 352.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o558-efi1.jpg
  • a = 10.073 (2) Å
  • b = 11.140 (2) Å
  • c = 16.161 (3) Å
  • β = 97.23 (3)°
  • V = 1799.1 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.971, T max = 0.981
  • 3458 measured reflections
  • 3262 independent reflections
  • 1950 reflections with I > 2σ(I)
  • R int = 0.042
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.175
  • S = 1.01
  • 3262 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005418/hb2910sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005418/hb2910Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of our ongoing studies on quinazoline derivatives (Knesl et al., 2006), we report herein the crystal structure of the title compound, (I).

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4-C9) is, of course, planar.

Experimental

A solution of methyl 4-(3-chloropropoxy)-5-methoxy-2-nitrobenzoate (0.013 mol), potassium carbonate (0.052mol), sodium iodide (0.026mol) in acetonitrile (33 mL) was stirred for 5-10 min at room temperature. Piperidine (0.040mol) was added and this mixture heated to reflux for 3 h. Reaction progress was monitored by TLC. Solid material was removed by filtration and washed with acetone. The combined filtrates were evaporated and the dark product obtained dissolved in dichloromethane (30 ml) and extracted with water (4 × 10 ml). The organic phase was dried (Na2SO4), decolorized (charcoal), filtered and evaporated to afford the product (yield; 71.2%,) as an amber oil. Yellow blocks of (I) were obtained by slow evaporation of an methanol solution.

Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of (I) showing 50% displacement ellipsoids for the non-hydrogen atoms.

Crystal data

C17H24N2O6F(000) = 752
Mr = 352.38Dx = 1.301 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.073 (2) Åθ = 10–13°
b = 11.140 (2) ŵ = 0.10 mm1
c = 16.161 (3) ÅT = 293 K
β = 97.23 (3)°Block, yellow
V = 1799.1 (6) Å30.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1950 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
graphiteθmax = 25.3°, θmin = 2.2°
ω/2θ scansh = 0→12
Absorption correction: ψ scan (North et al., 1968)k = 0→13
Tmin = 0.971, Tmax = 0.981l = −19→19
3458 measured reflections3 standard reflections every 200 reflections
3262 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.06P)2 + 2.6P] where P = (Fo2 + 2Fc2)/3
3262 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.0523 (2)0.3714 (2)0.40317 (15)0.0487 (7)
O21.0082 (3)0.1757 (2)0.38640 (16)0.0563 (7)
O30.7178 (3)0.5462 (3)0.32890 (18)0.0746 (10)
O40.7681 (3)0.3835 (3)0.39767 (17)0.0627 (8)
O50.8037 (2)0.4291 (2)0.03763 (13)0.0404 (6)
O60.9697 (2)0.2550 (2)0.05972 (14)0.0408 (6)
N10.7693 (3)0.4455 (3)0.33404 (18)0.0445 (8)
N20.6436 (2)0.7187 (2)−0.17424 (16)0.0314 (6)
C11.1303 (4)0.3499 (4)0.4829 (2)0.0633 (12)
H1A1.16460.42470.50610.095*
H1B1.20350.29730.47560.095*
H1C1.07480.31340.51990.095*
C20.9964 (3)0.2764 (3)0.3627 (2)0.0395 (8)
C30.9287 (3)0.3122 (3)0.27838 (19)0.0325 (7)
C40.9752 (3)0.2621 (3)0.20979 (19)0.0310 (7)
H4A1.03910.20150.21740.037*
C50.9293 (3)0.2995 (3)0.13026 (19)0.0303 (7)
C60.8349 (3)0.3941 (3)0.1185 (2)0.0328 (7)
C70.7857 (3)0.4424 (3)0.18563 (19)0.0316 (7)
H7A0.72290.50390.17820.038*
C80.8291 (3)0.4000 (3)0.26530 (19)0.0323 (7)
C91.0556 (4)0.1520 (3)0.0662 (2)0.0520 (10)
H9A1.07620.13030.01180.078*
H9B1.01120.08630.08960.078*
H9C1.13680.17060.10160.078*
C100.7202 (3)0.5334 (3)0.0212 (2)0.0368 (8)
H10A0.75560.59990.05600.044*
H10B0.63010.51650.03320.044*
C110.7190 (3)0.5643 (3)−0.0687 (2)0.0380 (8)
H11A0.68790.4957−0.10270.046*
H11B0.80940.5827−0.07960.046*
C120.6288 (3)0.6713 (3)−0.0931 (2)0.0404 (8)
H12A0.53640.6474−0.09220.048*
H12B0.64880.7343−0.05190.048*
C130.5908 (4)0.6370 (3)−0.2416 (2)0.0462 (9)
H13A0.49570.6258−0.24010.055*
H13B0.63400.5595−0.23260.055*
C140.6130 (5)0.6835 (4)−0.3253 (2)0.0601 (11)
H14A0.57130.6294−0.36790.072*
H14B0.70830.6848−0.32930.072*
C150.5571 (4)0.8070 (4)−0.3413 (2)0.0618 (11)
H15A0.46020.8042−0.34710.074*
H15B0.58370.8382−0.39280.074*
C160.6085 (4)0.8881 (3)−0.2698 (2)0.0509 (10)
H16A0.56610.9661−0.27790.061*
H16B0.70410.8991−0.26910.061*
C170.5809 (4)0.8370 (3)−0.1868 (2)0.0431 (9)
H17A0.61630.8905−0.14210.052*
H17B0.48510.8299−0.18600.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0500 (15)0.0488 (15)0.0426 (14)−0.0022 (12)−0.0119 (11)0.0005 (12)
O20.0646 (18)0.0432 (16)0.0596 (17)0.0030 (13)0.0019 (13)0.0194 (13)
O30.077 (2)0.079 (2)0.068 (2)0.0443 (18)0.0102 (16)−0.0039 (17)
O40.0541 (17)0.083 (2)0.0536 (17)0.0055 (15)0.0154 (13)0.0086 (16)
O50.0454 (14)0.0389 (13)0.0358 (13)0.0092 (11)0.0006 (10)0.0073 (11)
O60.0398 (13)0.0429 (14)0.0400 (13)0.0103 (11)0.0065 (10)−0.0039 (11)
N10.0279 (15)0.064 (2)0.0408 (17)0.0085 (15)0.0003 (12)−0.0051 (16)
N20.0313 (14)0.0257 (14)0.0365 (14)0.0058 (11)0.0010 (11)0.0049 (12)
C10.054 (3)0.085 (3)0.046 (2)−0.005 (2)−0.0129 (18)0.001 (2)
C20.0359 (19)0.042 (2)0.0406 (19)0.0052 (16)0.0040 (15)0.0079 (17)
C30.0281 (17)0.0323 (18)0.0358 (18)−0.0028 (14)−0.0015 (13)0.0014 (14)
C40.0257 (16)0.0305 (17)0.0369 (18)0.0034 (13)0.0052 (13)−0.0002 (14)
C50.0249 (16)0.0276 (17)0.0385 (18)−0.0009 (13)0.0038 (13)−0.0059 (14)
C60.0273 (17)0.0325 (18)0.0369 (18)−0.0028 (13)−0.0024 (13)0.0020 (14)
C70.0249 (16)0.0341 (18)0.0356 (17)0.0060 (14)0.0025 (13)0.0005 (14)
C80.0280 (17)0.0339 (18)0.0348 (17)0.0045 (14)0.0039 (13)−0.0040 (14)
C90.051 (2)0.045 (2)0.060 (2)0.0147 (18)0.0097 (18)−0.0103 (19)
C100.0323 (18)0.0338 (18)0.044 (2)0.0052 (14)0.0025 (14)0.0066 (15)
C110.0389 (19)0.0320 (18)0.0419 (19)0.0012 (15)0.0009 (15)0.0072 (15)
C120.040 (2)0.041 (2)0.0394 (19)0.0064 (16)0.0013 (15)0.0054 (16)
C130.051 (2)0.041 (2)0.043 (2)0.0069 (17)−0.0037 (16)−0.0023 (17)
C140.077 (3)0.058 (3)0.043 (2)0.007 (2)−0.0016 (19)−0.004 (2)
C150.070 (3)0.071 (3)0.043 (2)0.011 (2)−0.0005 (19)0.013 (2)
C160.055 (2)0.045 (2)0.054 (2)0.0093 (18)0.0088 (18)0.0187 (19)
C170.045 (2)0.0331 (19)0.051 (2)0.0104 (16)0.0081 (16)0.0028 (17)

Geometric parameters (Å, °)

O1—C21.332 (4)C9—H9A0.9600
O1—C11.442 (4)C9—H9B0.9600
O2—C21.187 (4)C9—H9C0.9600
O3—N11.235 (4)C10—C111.492 (4)
O4—N11.240 (4)C10—H10A0.9700
O5—C61.362 (4)C10—H10B0.9700
O5—C101.439 (4)C11—C121.521 (4)
O6—C51.352 (4)C11—H11A0.9700
O6—C91.432 (4)C11—H11B0.9700
N1—C81.422 (4)C12—H12A0.9700
N2—C121.439 (4)C12—H12B0.9700
N2—C171.464 (4)C13—C141.492 (5)
N2—C131.466 (4)C13—H13A0.9700
C1—H1A0.9600C13—H13B0.9700
C1—H1B0.9600C14—C151.498 (6)
C1—H1C0.9600C14—H14A0.9700
C2—C31.499 (4)C14—H14B0.9700
C3—C41.375 (4)C15—C161.506 (6)
C3—C81.398 (4)C15—H15A0.9700
C4—C51.375 (4)C15—H15B0.9700
C4—H4A0.9300C16—C171.514 (5)
C5—C61.416 (4)C16—H16A0.9700
C6—C71.360 (4)C16—H16B0.9700
C7—C81.389 (4)C17—H17A0.9700
C7—H7A0.9300C17—H17B0.9700
C2—O1—C1117.1 (3)O5—C10—H10B110.2
C6—O5—C10117.9 (2)C11—C10—H10B110.2
C5—O6—C9118.3 (3)H10A—C10—H10B108.5
O3—N1—O4120.9 (3)C10—C11—C12111.3 (3)
O3—N1—C8119.1 (3)C10—C11—H11A109.4
O4—N1—C8119.9 (3)C12—C11—H11A109.4
C12—N2—C17111.4 (3)C10—C11—H11B109.4
C12—N2—C13112.3 (3)C12—C11—H11B109.4
C17—N2—C13110.2 (3)H11A—C11—H11B108.0
O1—C1—H1A109.5N2—C12—C11113.3 (3)
O1—C1—H1B109.5N2—C12—H12A108.9
H1A—C1—H1B109.5C11—C12—H12A108.9
O1—C1—H1C109.5N2—C12—H12B108.9
H1A—C1—H1C109.5C11—C12—H12B108.9
H1B—C1—H1C109.5H12A—C12—H12B107.7
O2—C2—O1125.0 (3)N2—C13—C14112.1 (3)
O2—C2—C3124.1 (3)N2—C13—H13A109.2
O1—C2—C3110.5 (3)C14—C13—H13A109.2
C4—C3—C8118.2 (3)N2—C13—H13B109.2
C4—C3—C2117.5 (3)C14—C13—H13B109.2
C8—C3—C2124.0 (3)H13A—C13—H13B107.9
C5—C4—C3121.5 (3)C13—C14—C15112.3 (3)
C5—C4—H4A119.3C13—C14—H14A109.1
C3—C4—H4A119.3C15—C14—H14A109.1
O6—C5—C4125.2 (3)C13—C14—H14B109.1
O6—C5—C6115.3 (3)C15—C14—H14B109.1
C4—C5—C6119.5 (3)H14A—C14—H14B107.9
C7—C6—O5126.1 (3)C14—C15—C16109.5 (3)
C7—C6—C5119.6 (3)C14—C15—H15A109.8
O5—C6—C5114.4 (3)C16—C15—H15A109.8
C6—C7—C8120.1 (3)C14—C15—H15B109.8
C6—C7—H7A120.0C16—C15—H15B109.8
C8—C7—H7A120.0H15A—C15—H15B108.2
C7—C8—C3120.9 (3)C15—C16—C17111.7 (3)
C7—C8—N1119.2 (3)C15—C16—H16A109.3
C3—C8—N1119.8 (3)C17—C16—H16A109.3
O6—C9—H9A109.5C15—C16—H16B109.3
O6—C9—H9B109.5C17—C16—H16B109.3
H9A—C9—H9B109.5H16A—C16—H16B107.9
O6—C9—H9C109.5N2—C17—C16109.7 (3)
H9A—C9—H9C109.5N2—C17—H17A109.7
H9B—C9—H9C109.5C16—C17—H17A109.7
O5—C10—C11107.4 (3)N2—C17—H17B109.7
O5—C10—H10A110.2C16—C17—H17B109.7
C11—C10—H10A110.2H17A—C17—H17B108.2
C1—O1—C2—O2−1.6 (5)C4—C3—C8—C7−5.0 (5)
C1—O1—C2—C3−175.4 (3)C2—C3—C8—C7169.6 (3)
O2—C2—C3—C4−55.8 (5)C4—C3—C8—N1173.9 (3)
O1—C2—C3—C4118.1 (3)C2—C3—C8—N1−11.5 (5)
O2—C2—C3—C8129.6 (4)O3—N1—C8—C7−25.2 (5)
O1—C2—C3—C8−56.6 (4)O4—N1—C8—C7153.9 (3)
C8—C3—C4—C52.3 (5)O3—N1—C8—C3155.8 (3)
C2—C3—C4—C5−172.7 (3)O4—N1—C8—C3−25.0 (5)
C9—O6—C5—C47.4 (4)C6—O5—C10—C11171.1 (3)
C9—O6—C5—C6−174.4 (3)O5—C10—C11—C12177.9 (3)
C3—C4—C5—O6−180.0 (3)C17—N2—C12—C11−166.2 (3)
C3—C4—C5—C61.8 (5)C13—N2—C12—C1169.6 (4)
C10—O5—C6—C75.7 (4)C10—C11—C12—N2168.9 (3)
C10—O5—C6—C5−173.2 (3)C12—N2—C13—C14−176.9 (3)
O6—C5—C6—C7178.3 (3)C17—N2—C13—C1458.3 (4)
C4—C5—C6—C7−3.4 (4)N2—C13—C14—C15−55.0 (4)
O6—C5—C6—O5−2.8 (4)C13—C14—C15—C1651.9 (5)
C4—C5—C6—O5175.6 (3)C14—C15—C16—C17−54.0 (5)
O5—C6—C7—C8−178.2 (3)C12—N2—C17—C16175.3 (3)
C5—C6—C7—C80.7 (5)C13—N2—C17—C16−59.3 (4)
C6—C7—C8—C33.5 (5)C15—C16—C17—N258.5 (4)
C6—C7—C8—N1−175.4 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2910).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1994). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Knesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286–297. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography