PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m347–m348.
Published online 2009 February 28. doi:  10.1107/S1600536809006643
PMCID: PMC2968428

Dichloridobis(2-methoxy­dibenzo[c,e][1,2]oxaphospho­rine-κP)platinum(II) trichloro­methane solvate

Abstract

The title compound, [PtCl2(C13H11O2P)2]·CHCl3, has a rare PtCl2 bridging of two dibenzooxaphospho­rine ligands through the metal atom. The PtII ion is in a slightly distorted square-planar environment. The trichloro­methane solvent mol­ecule shows rotational disorder (major occupancy is 0.75) and is placed near to the inversion centre at (1/2, 1/2, 0) in channels parallel to the a axis. The solvent mol­ecule is linked to the complex mol­ecule via inter­molecular bifurcated C—H(...)Cl and C—H(...)O hydrogen bonds. The crystal structure is further stabilized by π–π inter­actions involving the benzene rings, with a centroid–centroid distance of 3.658 (8) Å.

Related literature

For the synthesis of the title compound and related compounds, see: Keglevich et al. (2008 [triangle]) and references therein. For a related phospho­nite structure, see: Claver et al. (2000 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m347-scheme1.jpg

Experimental

Crystal data

  • [PtCl2(C13H11O2P)2]·CHCl3
  • M r = 845.73
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m347-efi1.jpg
  • a = 10.186 (3) Å
  • b = 13.020 (5) Å
  • c = 13.510 (5) Å
  • α = 62.402 (11)°
  • β = 83.128 (12)°
  • γ = 67.456 (11)°
  • V = 1462.8 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 5.40 mm−1
  • T = 93 K
  • 0.40 × 0.30 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008 [triangle]) T min = 0.222, T max = 0.498 (expected range = 0.198–0.445)
  • 36911 measured reflections
  • 5339 independent reflections
  • 4822 reflections with I > 2σ(I)
  • R int = 0.114

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.151
  • S = 1.06
  • 5339 reflections
  • 381 parameters
  • 66 restraints
  • H-atom parameters constrained
  • Δρmax = 3.66 e Å−3
  • Δρmin = −2.69 e Å−3

Data collection: CrystalClear (Rigaku, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006643/ci2765sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006643/ci2765Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

TH thanks the HAS CRC for financial support and also a computer purchase administered through OTKA grant No. T-049712 kindly provided by Professor A. Kálmán. The authors are also grateful for partial funding from OTKA grants T-067679 (AK and GyK) and T-75869 (MC and TH).

supplementary crystallographic information

Comment

Syntheses, spectroscopic data and theoretical chemistry modeling of various dibenzooxaphosphorines including the parent compound of the title solvate have been reported by Keglevich et al. (2008).

The asymmetric unit of the title compound is shown in Fig. 1. The structure of the complex in the crystalline state is in agreement with that reported from theoretical modeling. A more stable cis form is prefered over the trans, with a syn-periplanar disposition of O—P—Pt—P torsion angles (O1—P1—Pt1—P2 ca 13.7 (3)° and O3—P2—Pt1—P1 ca 49.8 (3)°). However, Pt—P and Pt—-Cl distances appear to be 0.05–0.1 Å shorter in the crystal structure, compared to a theoretical model.

The shortest ring center···center distance of 3.658 (8) Å is observed between C14-C19 benzene rings of complex molecules at (x, y, z) and (1 -x, - y, 2 - z). The only other crystal structure in the CSD (Allen, 2002) having P—Pt—P bridging is MARJEU from the Orpen group (Claver et al., 2000). MARJEU entraps two kinds of solvents in differing stoichiometric ratios (1 for THF and 0.76 for dichloromethane) in its crystal. The title compound also shows disorder of the solvent placed near to inversion centres at (1/2, 1/2, 0) in channels parallel to the a axis. Partial fixation of the solvent occurs via bifurcated C—H ··· O and C—H ··· Cl close contacts from the trichloromethane H atom to an alkoxy O4 atom and to Cl1 (Table 2). Electronic influences of these interactions may also be reflected in the unequal bonding geometry around the metal center. Existence of this C—H···X interaction seems to be also corroborated by IR investigations that will be reported elsewhere together with the room-temperature X-ray study of this compound. It appears from these results that the trichloromethane guest disorder is partly of kinetical nature. The C and H atom positions are relatively well kept while chlorine atoms change their positions with respect to the C—H bond.

Experimental

Synthesis of the parent compound and related ones is reported by Keglevich et al. (2008). Recrystallization of the title dibenzo-oxaphosphorine complex from chloroform yielded X-ray quality crystals, solvent content of which became apparent only after the X-ray study.

Refinement

H atoms were placed in idealized positions (C-H = 0.95-0.98 Å) and refined using a riding model with Uiso(H) = 1.2-1.5Ueq(C). The Cl atoms of the trichloromethane solvent molecule were disordered over two sites. The site occupancies and displacement parameters of the disordered atoms were alternately refined and during the final cycles of refinement the occupancies were fixed at 0.75 and 0.25. The C—Cl and Cl···Cl distances involving the disordered atoms were restrained to be equal, and also their Uij parameters were restrained to an approximate isotropic behaviour. The free and restrained refinement models for the solvent resulted in small differences in occupancies of chlorine sites. The restraints virtually improved C—Cl and C···C distances but the maximum positive residual peak appeared close to a minor occupancy Cl site in contrast to the free disorder model, where both maximum and minimum residual densities appeared close to the metal atom.

Figures

Fig. 1.
The asymmetric unit of the title compound, with the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level. Suffixes A and B indicate major and minor components of the disordered solvent molecule.
Fig. 2.
A packing view of the title compound showing intermolecular close contacts as dashed lines.

Crystal data

[PtCl2(C13H11O2P)2]·CHCl3Z = 2
Mr = 845.73F(000) = 820
Triclinic, P1Dx = 1.920 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 10.186 (3) ÅCell parameters from 40740 reflections
b = 13.020 (5) Åθ = 3.1–28.7°
c = 13.510 (5) ŵ = 5.40 mm1
α = 62.402 (11)°T = 93 K
β = 83.128 (12)°Prism, colourless
γ = 67.456 (11)°0.40 × 0.30 × 0.15 mm
V = 1462.8 (9) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer5339 independent reflections
Radiation source: fine-focus sealed tube4822 reflections with I > 2σ(I)
graphiteRint = 0.114
Detector resolution: 10 pixels mm-1θmax = 25.4°, θmin = 3.1°
ω scansh = −12→12
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008)k = −15→15
Tmin = 0.222, Tmax = 0.498l = −16→16
36911 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0609P)2 + 24.9249P] where P = (Fo2 + 2Fc2)/3
5339 reflections(Δ/σ)max = 0.001
381 parametersΔρmax = 3.66 e Å3
66 restraintsΔρmin = −2.69 e Å3

Special details

Experimental. Multi-scan empirical absorption correction by T. Higashi in FS-Process

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Pt1−0.03953 (4)0.00011 (3)0.72977 (3)0.02055 (16)
Cl1−0.0887 (3)−0.1812 (2)0.8105 (2)0.0269 (5)
Cl2−0.2425 (3)0.0975 (3)0.6061 (2)0.0301 (6)
P1−0.0015 (3)0.1747 (2)0.6439 (2)0.0217 (5)
P20.1547 (3)−0.0974 (2)0.8424 (2)0.0206 (5)
O2−0.0202 (9)0.2390 (7)0.5122 (6)0.0282 (17)
O10.1586 (8)0.1516 (6)0.6736 (6)0.0244 (15)
O40.1766 (8)−0.2306 (6)0.9426 (6)0.0244 (15)
O30.1682 (7)−0.0208 (6)0.9011 (6)0.0205 (14)
C8−0.1302 (14)0.4864 (11)0.6809 (10)0.036 (3)
H8−0.09180.54470.67550.043*
C200.4336 (11)−0.1284 (10)0.8228 (9)0.025 (2)
C50.1658 (13)0.4537 (10)0.6086 (10)0.031 (2)
H50.10620.53280.60390.037*
C60.1065 (12)0.3635 (10)0.6376 (9)0.026 (2)
C40.3042 (13)0.4330 (10)0.5870 (9)0.031 (3)
H40.33920.49730.56830.038*
C30.3947 (13)0.3213 (11)0.5916 (10)0.032 (3)
H30.49130.30850.57510.039*
C20.3439 (12)0.2267 (10)0.6208 (9)0.028 (2)
H20.40500.14770.62610.034*
C10.2005 (11)0.2512 (9)0.6421 (8)0.022 (2)
C12−0.1048 (12)0.3029 (10)0.6709 (9)0.027 (2)
C11−0.2464 (13)0.3206 (11)0.6967 (10)0.032 (3)
H11−0.28550.26230.70340.039*
C10−0.3290 (13)0.4235 (10)0.7126 (10)0.033 (3)
H10−0.42610.43790.72820.040*
C9−0.2690 (14)0.5046 (12)0.7054 (11)0.038 (3)
H9−0.32490.57470.71760.045*
C180.5477 (11)−0.1675 (10)0.9975 (9)0.027 (2)
H180.6385−0.20560.97610.033*
C190.4259 (11)−0.1218 (10)0.9284 (9)0.024 (2)
C170.5387 (13)−0.1583 (11)1.0952 (10)0.031 (2)
H170.6228−0.19051.14090.037*
C160.4095 (13)−0.1031 (11)1.1274 (10)0.031 (2)
H160.4044−0.09661.19510.038*
C150.2862 (12)−0.0566 (10)1.0621 (9)0.027 (2)
H150.1961−0.01691.08340.032*
C140.2973 (11)−0.0692 (9)0.9645 (9)0.023 (2)
C250.3171 (10)−0.1268 (10)0.7759 (9)0.023 (2)
C240.3216 (11)−0.1342 (10)0.6771 (9)0.027 (2)
H240.2402−0.13150.64680.032*
C230.4470 (13)−0.1458 (12)0.6224 (10)0.036 (3)
H230.4530−0.15350.55520.044*
C220.5620 (12)−0.1459 (12)0.6658 (10)0.035 (3)
H220.6466−0.15140.62700.042*
C7−0.0446 (12)0.3848 (10)0.6641 (9)0.027 (2)
C130.0389 (14)0.1694 (12)0.4507 (11)0.037 (3)
H13A0.13650.11170.48110.055*
H13B0.03990.22670.37180.055*
H13C−0.01910.12180.45700.055*
C210.5574 (12)−0.1384 (11)0.7646 (10)0.032 (3)
H210.6391−0.13990.79360.038*
C260.0861 (14)−0.2423 (11)1.0352 (10)0.035 (3)
H26A−0.0134−0.20951.00750.053*
H26B0.0965−0.19491.07080.053*
H26C0.1140−0.33051.09010.053*
C270.7983 (12)0.4650 (12)0.0943 (6)0.063 (5)
H270.87020.38830.09780.076*
Cl3A0.8930 (6)0.5478 (5)0.1096 (5)0.0597 (13)0.75
Cl4A0.7076 (9)0.5499 (5)−0.0314 (5)0.096 (3)0.75
Cl5A0.7023 (7)0.4234 (6)0.2081 (6)0.092 (2)0.75
Cl3B0.6172 (15)0.478 (2)0.0820 (17)0.115 (8)0.25
Cl4B0.801 (2)0.519 (2)0.1872 (13)0.101 (7)0.25
Cl5B0.8268 (17)0.5635 (14)−0.0399 (9)0.067 (4)0.25

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pt10.0207 (2)0.0197 (2)0.0229 (2)−0.01008 (17)0.00217 (16)−0.00909 (18)
Cl10.0273 (13)0.0263 (13)0.0306 (13)−0.0164 (11)0.0015 (11)−0.0105 (11)
Cl20.0258 (13)0.0334 (14)0.0328 (14)−0.0082 (11)−0.0027 (11)−0.0174 (12)
P10.0233 (13)0.0177 (12)0.0222 (13)−0.0071 (10)0.0002 (10)−0.0077 (11)
P20.0224 (13)0.0187 (13)0.0246 (13)−0.0110 (10)0.0037 (10)−0.0107 (11)
O20.040 (4)0.028 (4)0.022 (4)−0.016 (3)0.005 (3)−0.013 (3)
O10.024 (4)0.017 (3)0.027 (4)−0.008 (3)−0.002 (3)−0.005 (3)
O40.029 (4)0.019 (4)0.022 (4)−0.011 (3)−0.002 (3)−0.005 (3)
O30.020 (3)0.026 (4)0.022 (4)−0.010 (3)−0.003 (3)−0.014 (3)
C80.055 (8)0.023 (6)0.025 (6)−0.011 (5)−0.003 (5)−0.009 (5)
C200.026 (5)0.020 (5)0.025 (5)−0.009 (4)0.002 (4)−0.008 (4)
C50.041 (7)0.021 (5)0.030 (6)−0.014 (5)−0.002 (5)−0.009 (5)
C60.032 (6)0.024 (5)0.023 (5)−0.013 (5)0.002 (4)−0.009 (4)
C40.049 (7)0.011 (5)0.027 (6)−0.014 (5)−0.001 (5)0.000 (4)
C30.029 (6)0.041 (7)0.031 (6)−0.023 (5)0.003 (5)−0.011 (5)
C20.028 (6)0.027 (6)0.031 (6)−0.013 (5)0.006 (5)−0.014 (5)
C10.032 (6)0.019 (5)0.014 (5)−0.015 (4)−0.003 (4)0.000 (4)
C120.027 (6)0.024 (5)0.026 (5)−0.007 (4)0.000 (4)−0.009 (5)
C110.033 (6)0.035 (6)0.035 (6)−0.016 (5)0.005 (5)−0.020 (5)
C100.030 (6)0.024 (6)0.032 (6)0.001 (5)0.005 (5)−0.012 (5)
C90.039 (7)0.032 (6)0.038 (7)−0.008 (5)−0.006 (5)−0.015 (6)
C180.021 (5)0.028 (6)0.031 (6)−0.009 (4)0.002 (4)−0.012 (5)
C190.029 (6)0.022 (5)0.023 (5)−0.016 (4)0.001 (4)−0.007 (4)
C170.034 (6)0.027 (6)0.032 (6)−0.011 (5)−0.006 (5)−0.012 (5)
C160.040 (7)0.033 (6)0.027 (6)−0.020 (5)0.002 (5)−0.013 (5)
C150.037 (6)0.026 (5)0.026 (5)−0.019 (5)0.002 (5)−0.013 (5)
C140.026 (5)0.010 (4)0.023 (5)−0.008 (4)−0.002 (4)0.002 (4)
C250.013 (5)0.024 (5)0.036 (6)−0.008 (4)0.003 (4)−0.016 (5)
C240.020 (5)0.029 (6)0.033 (6)−0.008 (4)−0.003 (4)−0.016 (5)
C230.029 (6)0.052 (8)0.031 (6)−0.011 (6)0.007 (5)−0.026 (6)
C220.024 (6)0.051 (8)0.034 (6)−0.014 (5)0.011 (5)−0.024 (6)
C70.032 (6)0.021 (5)0.019 (5)−0.005 (4)−0.009 (4)−0.004 (4)
C130.049 (7)0.039 (7)0.039 (7)−0.025 (6)0.017 (6)−0.027 (6)
C210.023 (5)0.033 (6)0.030 (6)−0.010 (5)−0.002 (5)−0.006 (5)
C260.052 (8)0.032 (6)0.027 (6)−0.027 (6)0.006 (5)−0.010 (5)
C270.080 (12)0.027 (7)0.061 (10)−0.004 (7)0.005 (9)−0.016 (7)
Cl3A0.065 (3)0.056 (3)0.068 (3)−0.030 (2)0.006 (3)−0.030 (3)
Cl4A0.136 (6)0.050 (3)0.089 (4)0.004 (3)−0.058 (4)−0.038 (3)
Cl5A0.092 (4)0.077 (4)0.126 (6)−0.049 (4)0.060 (4)−0.059 (4)
Cl3B0.137 (13)0.104 (11)0.122 (12)−0.043 (9)0.029 (9)−0.072 (9)
Cl4B0.106 (11)0.095 (10)0.080 (10)−0.006 (8)0.001 (8)−0.047 (8)
Cl5B0.061 (8)0.054 (7)0.068 (8)−0.015 (6)0.015 (7)−0.023 (6)

Geometric parameters (Å, °)

Pt1—P12.188 (3)C10—C91.374 (18)
Pt1—P22.201 (3)C10—H100.95
Pt1—Cl12.325 (3)C9—H90.95
Pt1—Cl22.351 (3)C18—C171.369 (16)
P1—O21.575 (8)C18—C191.401 (15)
P1—O11.607 (7)C18—H180.95
P1—C121.775 (11)C19—C141.376 (15)
P2—O41.579 (7)C17—C161.365 (17)
P2—O31.584 (7)C17—H170.95
P2—C251.780 (10)C16—C151.382 (16)
O2—C131.426 (13)C16—H160.95
O1—C11.383 (12)C15—C141.389 (15)
O4—C261.446 (14)C15—H150.95
O3—C141.411 (12)C25—C241.376 (15)
C8—C91.366 (18)C24—C231.390 (16)
C8—C71.382 (16)C24—H240.95
C8—H80.95C23—C221.370 (17)
C20—C211.398 (15)C23—H230.95
C20—C251.400 (15)C22—C211.378 (17)
C20—C191.459 (15)C22—H220.95
C5—C41.352 (17)C13—H13A0.98
C5—C61.399 (15)C13—H13B0.98
C5—H50.95C13—H13C0.98
C6—C11.385 (15)C21—H210.95
C6—C71.486 (16)C26—H26A0.98
C4—C31.368 (17)C26—H26B0.98
C4—H40.95C26—H26C0.98
C3—C21.389 (16)C27—Cl4A1.676 (8)
C3—H30.95C27—Cl5A1.700 (8)
C2—C11.394 (15)C27—Cl4B1.705 (9)
C2—H20.95C27—Cl5B1.738 (9)
C12—C71.386 (16)C27—Cl3A1.785 (8)
C12—C111.398 (16)C27—Cl3B1.807 (10)
C11—C101.380 (16)C27—H270.97
C11—H110.95
P1—Pt1—P293.21 (10)C17—C18—H18119.3
P1—Pt1—Cl1176.23 (9)C19—C18—H18119.3
P2—Pt1—Cl190.20 (9)C14—C19—C18116.7 (10)
P1—Pt1—Cl288.05 (10)C14—C19—C20121.1 (10)
P2—Pt1—Cl2177.30 (9)C18—C19—C20122.2 (10)
Cl1—Pt1—Cl288.47 (10)C16—C17—C18120.4 (11)
O2—P1—O1105.7 (4)C16—C17—H17119.8
O2—P1—C12100.9 (5)C18—C17—H17119.8
O1—P1—C12102.7 (5)C17—C16—C15120.4 (11)
O2—P1—Pt1115.3 (3)C17—C16—H16119.8
O1—P1—Pt1110.6 (3)C15—C16—H16119.8
C12—P1—Pt1120.0 (4)C16—C15—C14118.3 (11)
O4—P2—O3103.9 (4)C16—C15—H15120.8
O4—P2—C25102.2 (5)C14—C15—H15120.8
O3—P2—C25103.7 (4)C19—C14—C15122.8 (10)
O4—P2—Pt1117.8 (3)C19—C14—O3121.1 (9)
O3—P2—Pt1112.8 (3)C15—C14—O3116.1 (9)
C25—P2—Pt1114.8 (4)C24—C25—C20122.5 (9)
C13—O2—P1121.6 (8)C24—C25—P2120.7 (8)
C1—O1—P1120.7 (6)C20—C25—P2116.4 (8)
C26—O4—P2119.8 (7)C25—C24—C23119.0 (10)
C14—O3—P2116.7 (6)C25—C24—H24120.5
C9—C8—C7121.3 (12)C23—C24—H24120.5
C9—C8—H8119.4C22—C23—C24119.6 (11)
C7—C8—H8119.4C22—C23—H23120.2
C21—C20—C25116.9 (10)C24—C23—H23120.2
C21—C20—C19122.0 (10)C23—C22—C21121.4 (11)
C25—C20—C19121.2 (9)C23—C22—H22119.3
C4—C5—C6122.8 (11)C21—C22—H22119.3
C4—C5—H5118.6C8—C7—C12117.8 (11)
C6—C5—H5118.6C8—C7—C6121.9 (11)
C1—C6—C5114.8 (10)C12—C7—C6120.3 (10)
C1—C6—C7122.2 (10)O2—C13—H13A109.5
C5—C6—C7122.9 (10)O2—C13—H13B109.5
C5—C4—C3121.2 (10)H13A—C13—H13B109.5
C5—C4—H4119.4O2—C13—H13C109.5
C3—C4—H4119.4H13A—C13—H13C109.5
C4—C3—C2119.3 (11)H13B—C13—H13C109.5
C4—C3—H3120.3C22—C21—C20120.6 (11)
C2—C3—H3120.3C22—C21—H21119.7
C3—C2—C1118.0 (10)C20—C21—H21119.7
C3—C2—H2121.0O4—C26—H26A109.5
C1—C2—H2121.0O4—C26—H26B109.5
O1—C1—C6121.4 (9)H26A—C26—H26B109.5
O1—C1—C2114.8 (9)O4—C26—H26C109.5
C6—C1—C2123.8 (10)H26A—C26—H26C109.5
C7—C12—C11121.1 (10)H26B—C26—H26C109.5
C7—C12—P1119.5 (8)Cl4A—C27—Cl5A116.8 (7)
C11—C12—P1119.4 (9)Cl4B—C27—Cl5B111.4 (8)
C10—C11—C12119.5 (11)Cl4A—C27—Cl3A109.2 (6)
C10—C11—H11120.2Cl5A—C27—Cl3A108.1 (5)
C12—C11—H11120.2Cl4B—C27—Cl3B106.4 (7)
C9—C10—C11119.1 (11)Cl5B—C27—Cl3B103.9 (7)
C9—C10—H10120.4Cl4A—C27—H27109.4
C11—C10—H10120.4Cl5A—C27—H27106.7
C8—C9—C10121.2 (12)Cl4B—C27—H27122.5
C8—C9—H9119.4Cl5B—C27—H2796.6
C10—C9—H9119.4Cl3A—C27—H27105.9
C17—C18—C19121.4 (10)Cl3B—C27—H27114.2
Cl1—Pt1—P2—O4−10.8 (3)C25—C20—C19—C14−24.2 (15)
Cl2—Pt1—P1—O2−44.1 (4)O1—P1—Pt1—P213.7 (3)
C12—C7—C6—C1−13.9 (16)O3—P2—Pt1—P149.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C27—H27···Cl1i0.972.593.491 (14)154
C27—H27···O4i0.972.573.226 (17)125

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2765).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Claver, C., Fernandez, E., Gillon, A. L., Heslop, K. M., Hyett, D. J., Martorell, A., Orpen, A. G. & Pringle, P. G. (2000). Chem. Commun. pp. 961–962.
  • Keglevich, Gy., Kerényi, A., Mayer, B., Körtvélyesi, T. & Ludányi, K. (2008). Transition Met. Chem.33, 505–510.
  • Rigaku (2008). CrystalStructure. Rigaku Corporation, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography