PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o585.
Published online 2009 February 25. doi:  10.1107/S160053680900508X
PMCID: PMC2968426

N′-[1-(2-Hydroxy­phen­yl)ethyl­idene]-2-nitro­benzohydrazide methanol solvate

Abstract

In the title compound, C15H13N3O4·CH3OH, the dihedral angle between the two substituted benzene rings is 66.7 (2)°. An intra­molecular O—H(...)N hydrogen bond is observed in the Schiff base mol­ecule. In the crystal structure, the Schiff base and solvent mol­ecules are linked into chains running along the a axis by inter­molecular O—H(...)O and N—H(...)O hydrogen bonds.

Related literature

For the biological properties of hydrazone compounds, see: Bedia et al. (2006 [triangle]). For complexes of hydrazone compounds, see: Iskander et al. (2001 [triangle]); Aggarwal et al. (1981 [triangle]); Aruffo et al. (1982 [triangle]). For related structures, see: Fun et al. (2008a [triangle],b [triangle]); Butcher et al. (2007 [triangle]); Zhi & Yang (2007 [triangle]); Mohd Lair et al. (2009a [triangle],b [triangle]); Yehye et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o585-scheme1.jpg

Experimental

Crystal data

  • C15H13N3O4·CH4O
  • M r = 331.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o585-efi1.jpg
  • a = 7.124 (2) Å
  • b = 8.066 (2) Å
  • c = 15.764 (3) Å
  • α = 101.950 (2)°
  • β = 92.972 (2)°
  • γ = 114.889 (2)°
  • V = 794.0 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 298 K
  • 0.23 × 0.23 × 0.22 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.976, T max = 0.977
  • 4659 measured reflections
  • 3371 independent reflections
  • 2660 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.124
  • S = 1.05
  • 3371 reflections
  • 226 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900508X/ci2770sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900508X/ci2770Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Changsha University of Science and Technology (Project No. 1004091).

supplementary crystallographic information

Comment

Hydrazone compounds have been demonstrated to possess biological properties, such as antimicrobial, antitubercular, anticancer and antitumor (Bedia et al., 2006). Moreover, these compounds are good ligands in the coordination chemistry (Iskander et al., 2001; Aggarwal et al., 1981; Aruffo et al., 1982). Recently, a large number of hydrazone compounds have been reported (Fun et al., 2008b; Butcher et al., 2007; Zhi & Yang, 2007). In this paper, a new hydrazone compound (Fig. 1), derived from 1-(2-hydroxyphenyl)ethanone and 2-nitrobenzohydrazide is reported.

The asymmetric unit of the title compound contains a Schiff base molecule and a methanol molecule of crystallization. The dihedral angle between the two substituted benzene rings is 66.7 (2)°, indicating that the Schiff base molecule is twisted. The dihedral angle between the C1-C6 and O2/O3/N3/C2 planes is 26.0 (1)°. All bond lengths in the compound are typical (Allen et al., 1987) and comparable to those observed in similar hydrazone compounds (Fun et al., 2008a; Mohd Lair et al., 2009a,b; Yehye et al., 2008). An intramolecular O—H···N hydrogen bond is observed in the Schiff base molecule.

In the crystal structure, the Schiff base and methanol molecules are linked through O–H···O and N–H···O hydrogen bonds (Table 1), forming chains running along the a axis (Fig. 2).

Experimental

1-(2-Hydroxyphenyl)ethanone (1.0 mmol, 136.2 mg) and 2-nitrobenzohydrazide (1.0 mmol, 197.2 mg) were stirred at room temperature for 3 h. The filtrate was kept in air for a few days to obtain colourless block-shaped crystals of the title compound.

Refinement

Atom H1 attached to N1 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. C- and O-bound H atoms were positioned geometrically and refined using a riding model with d(C–H) = 0.93–0.96 Å, d(O–H) = 0.82 Å and Uiso = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl).

Figures

Fig. 1.
The molecular structure of the title compound, with 30% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.
Fig. 2.
Hydrogen-bonded (dashed lines) chains in the title compound, viewed along the b axis. H atoms not involved in the interactions have been omitted for clarity.

Crystal data

C15H13N3O4·CH4OZ = 2
Mr = 331.33F(000) = 348
Triclinic, P1Dx = 1.386 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.124 (2) ÅCell parameters from 1968 reflections
b = 8.066 (2) Åθ = 2.6–28.5°
c = 15.764 (3) ŵ = 0.11 mm1
α = 101.950 (2)°T = 298 K
β = 92.972 (2)°Block, colourless
γ = 114.889 (2)°0.23 × 0.23 × 0.22 mm
V = 794.0 (3) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer3371 independent reflections
Radiation source: fine-focus sealed tube2660 reflections with I > 2σ(I)
graphiteRint = 0.014
ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −8→9
Tmin = 0.976, Tmax = 0.977k = −10→10
4659 measured reflectionsl = −19→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124w = 1/[σ2(Fo2) + (0.0585P)2 + 0.1607P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3371 reflectionsΔρmax = 0.24 e Å3
226 parametersΔρmin = −0.23 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.066 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.46363 (18)0.2874 (2)0.22886 (7)0.0558 (3)
O20.2215 (3)0.7197 (2)0.41556 (13)0.0902 (5)
O30.4022 (2)0.65556 (18)0.32038 (9)0.0639 (4)
O40.3900 (2)0.2749 (2)−0.00437 (8)0.0597 (4)
H40.36250.27870.04570.089*
O50.81043 (17)0.27761 (18)0.30757 (8)0.0522 (3)
H50.71580.29680.28670.078*
N10.13992 (19)0.27191 (19)0.20210 (8)0.0396 (3)
N20.1602 (2)0.27247 (19)0.11548 (8)0.0403 (3)
N30.2967 (2)0.61957 (19)0.37848 (10)0.0495 (4)
C10.2777 (2)0.2991 (2)0.34961 (9)0.0336 (3)
C20.2633 (2)0.4482 (2)0.40702 (9)0.0363 (3)
C30.2296 (2)0.4472 (2)0.49259 (10)0.0441 (4)
H30.21630.54720.52880.053*
C40.2163 (2)0.2946 (2)0.52303 (10)0.0472 (4)
H4A0.19470.29170.58050.057*
C50.2348 (2)0.1460 (2)0.46837 (11)0.0450 (4)
H5A0.22860.04480.48960.054*
C60.2625 (2)0.1475 (2)0.38232 (10)0.0386 (3)
H60.27120.04530.34580.046*
C70.3056 (2)0.2892 (2)0.25478 (9)0.0375 (3)
C80.0013 (2)0.2459 (2)0.06163 (9)0.0383 (3)
C9−0.2106 (3)0.2077 (3)0.08602 (11)0.0564 (5)
H9A−0.23630.13730.12980.085*
H9B−0.31550.13610.03500.085*
H9C−0.21600.32530.10890.085*
C100.0411 (3)0.2564 (2)−0.02863 (9)0.0412 (4)
C110.2322 (3)0.2729 (2)−0.05640 (10)0.0468 (4)
C120.2639 (4)0.2882 (3)−0.14152 (12)0.0639 (5)
H120.39050.3006−0.15950.077*
C130.1107 (4)0.2853 (3)−0.19919 (12)0.0712 (6)
H130.13410.2953−0.25580.085*
C14−0.0770 (4)0.2676 (3)−0.17371 (12)0.0678 (6)
H14−0.18080.2648−0.21310.081*
C15−0.1110 (3)0.2540 (3)−0.08957 (11)0.0543 (4)
H15−0.23820.2429−0.07280.065*
C160.7246 (3)0.1002 (3)0.32738 (15)0.0637 (5)
H16A0.83220.05980.33400.096*
H16B0.61540.00970.28060.096*
H16C0.66750.11030.38100.096*
H10.030 (2)0.277 (3)0.2252 (11)0.052 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0432 (7)0.0981 (10)0.0467 (6)0.0446 (7)0.0145 (5)0.0297 (6)
O20.1112 (14)0.0669 (9)0.1256 (14)0.0645 (10)0.0392 (11)0.0317 (9)
O30.0749 (9)0.0548 (7)0.0645 (8)0.0235 (7)0.0108 (7)0.0313 (6)
O40.0544 (8)0.0912 (9)0.0469 (7)0.0439 (7)0.0126 (6)0.0183 (7)
O50.0372 (6)0.0664 (7)0.0588 (7)0.0265 (6)0.0036 (5)0.0209 (6)
N10.0333 (7)0.0574 (8)0.0337 (6)0.0243 (6)0.0058 (5)0.0135 (6)
N20.0391 (7)0.0543 (7)0.0329 (6)0.0252 (6)0.0042 (5)0.0123 (5)
N30.0477 (8)0.0415 (7)0.0602 (9)0.0216 (6)−0.0014 (7)0.0133 (6)
C10.0243 (6)0.0407 (7)0.0365 (7)0.0144 (6)0.0020 (5)0.0115 (6)
C20.0294 (7)0.0382 (7)0.0420 (8)0.0157 (6)0.0004 (6)0.0111 (6)
C30.0368 (8)0.0516 (9)0.0412 (8)0.0209 (7)0.0040 (6)0.0038 (7)
C40.0399 (8)0.0664 (10)0.0351 (8)0.0206 (8)0.0087 (6)0.0184 (7)
C50.0402 (8)0.0495 (9)0.0501 (9)0.0180 (7)0.0088 (7)0.0258 (7)
C60.0345 (8)0.0390 (7)0.0443 (8)0.0174 (6)0.0056 (6)0.0120 (6)
C70.0315 (7)0.0471 (8)0.0391 (8)0.0204 (6)0.0062 (6)0.0146 (6)
C80.0388 (8)0.0385 (7)0.0379 (8)0.0202 (6)−0.0001 (6)0.0050 (6)
C90.0400 (9)0.0804 (12)0.0470 (9)0.0277 (9)−0.0005 (7)0.0123 (9)
C100.0492 (9)0.0390 (7)0.0340 (7)0.0215 (7)−0.0019 (6)0.0039 (6)
C110.0557 (10)0.0477 (9)0.0377 (8)0.0264 (8)0.0039 (7)0.0053 (7)
C120.0784 (14)0.0734 (13)0.0419 (9)0.0364 (11)0.0161 (9)0.0110 (9)
C130.1033 (18)0.0730 (13)0.0326 (9)0.0357 (12)0.0059 (10)0.0119 (9)
C140.0875 (15)0.0701 (12)0.0408 (10)0.0355 (11)−0.0158 (9)0.0084 (9)
C150.0589 (11)0.0597 (10)0.0424 (9)0.0286 (9)−0.0080 (7)0.0077 (8)
C160.0495 (11)0.0652 (12)0.0875 (14)0.0311 (9)0.0180 (10)0.0274 (10)

Geometric parameters (Å, °)

O1—C71.2218 (18)C5—H5A0.93
O2—N31.2172 (19)C6—H60.93
O3—N31.2192 (19)C8—C101.478 (2)
O4—C111.349 (2)C8—C91.497 (2)
O4—H40.82C9—H9A0.96
O5—C161.410 (2)C9—H9B0.96
O5—H50.82C9—H9C0.96
N1—C71.3472 (18)C10—C151.401 (2)
N1—N21.3812 (17)C10—C111.412 (2)
N1—H10.893 (9)C11—C121.394 (2)
N2—C81.2916 (19)C12—C131.373 (3)
N3—C21.4705 (19)C12—H120.93
C1—C61.389 (2)C13—C141.374 (3)
C1—C21.392 (2)C13—H130.93
C1—C71.5083 (19)C14—C151.379 (3)
C2—C31.383 (2)C14—H140.93
C3—C41.380 (2)C15—H150.93
C3—H30.93C16—H16A0.96
C4—C51.384 (2)C16—H16B0.96
C4—H4A0.93C16—H16C0.96
C5—C61.383 (2)
C11—O4—H4109.5C10—C8—C9120.59 (13)
C16—O5—H5109.5C8—C9—H9A109.5
C7—N1—N2117.46 (12)C8—C9—H9B109.5
C7—N1—H1119.7 (12)H9A—C9—H9B109.5
N2—N1—H1122.2 (12)C8—C9—H9C109.5
C8—N2—N1119.43 (12)H9A—C9—H9C109.5
O2—N3—O3123.74 (15)H9B—C9—H9C109.5
O2—N3—C2118.16 (15)C15—C10—C11117.60 (15)
O3—N3—C2118.08 (14)C15—C10—C8120.27 (15)
C6—C1—C2117.14 (13)C11—C10—C8122.11 (14)
C6—C1—C7117.87 (13)O4—C11—C12116.92 (16)
C2—C1—C7124.98 (13)O4—C11—C10123.35 (14)
C3—C2—C1122.71 (14)C12—C11—C10119.73 (16)
C3—C2—N3117.65 (14)C13—C12—C11120.8 (2)
C1—C2—N3119.55 (13)C13—C12—H12119.6
C4—C3—C2118.57 (15)C11—C12—H12119.6
C4—C3—H3120.7C12—C13—C14120.37 (18)
C2—C3—H3120.7C12—C13—H13119.8
C3—C4—C5120.24 (14)C14—C13—H13119.8
C3—C4—H4A119.9C13—C14—C15119.77 (18)
C5—C4—H4A119.9C13—C14—H14120.1
C6—C5—C4120.21 (14)C15—C14—H14120.1
C6—C5—H5A119.9C14—C15—C10121.72 (19)
C4—C5—H5A119.9C14—C15—H15119.1
C5—C6—C1121.08 (14)C10—C15—H15119.1
C5—C6—H6119.5O5—C16—H16A109.5
C1—C6—H6119.5O5—C16—H16B109.5
O1—C7—N1123.95 (14)H16A—C16—H16B109.5
O1—C7—C1121.23 (13)O5—C16—H16C109.5
N1—C7—C1114.72 (12)H16A—C16—H16C109.5
N2—C8—C10115.28 (13)H16B—C16—H16C109.5
N2—C8—C9124.13 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.89 (1)2.08 (1)2.9563 (17)165 (2)
O5—H5···O10.821.942.7451 (16)168
O4—H4···N20.821.852.5612 (17)144

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2770).

References

  • Aggarwal, R. C., Singh, N. K. & Singh, R. P. (1981). Inorg. Chem.20, 2794–2798.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Aruffo, A. A., Murphy, T. B., Johnson, D. K., Rose, N. J. & Schomaker, V. (1982). Inorg. Chim. Acta, 67, L25–L27.
  • Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem.41, 1253–1261. [PubMed]
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Butcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3652.
  • Fun, H.-K., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008a). Acta Cryst. E64, o2377. [PMC free article] [PubMed]
  • Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008b). Acta Cryst. E64, o1907–o1908. [PMC free article] [PubMed]
  • Iskander, M. F., Khalil, T. E., Haase, W., Werner, R., Svoboda, I. & Fuess, H. (2001). Polyhedron, 20, 2787–2798.
  • Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o189. [PMC free article] [PubMed]
  • Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009b). Acta Cryst. E65, o190. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o960. [PMC free article] [PubMed]
  • Zhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography