PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o232.
Published online 2009 January 8. doi:  10.1107/S1600536808043687
PMCID: PMC2968410

(25R)-5a-Spiro­stane-3,12-dione

Abstract

The title compound, C27H40O4, was obtained from the oxidation of (25R)-3b-hydr­oxy-5a-spiro­stan-12-one (Hecogenin) by Jone’s reagent. The mol­ecule contains six alicyclic and heterocyclic rings, all trans-fused, among which four six-membered rings adopt similar chair conformations while two five-membered rings assume an envelope conformation.

Related literature

For general background, see: Chakravarti et al. (1953 [triangle]); Djerassi et al. (1962 [triangle]); Huang et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o232-scheme1.jpg

Experimental

Crystal data

  • C27H40O4
  • M r = 428.59
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o232-efi1.jpg
  • a = 12.660 (3) Å
  • b = 6.443 (3) Å
  • c = 30.167 (3) Å
  • β = 98.02 (3)°
  • V = 2436.8 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 292 (2) K
  • 0.44 × 0.40 × 0.30 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 2837 measured reflections
  • 2407 independent reflections
  • 919 reflections with I > 2σ(I)
  • R int = 0.136
  • 3 standard reflections every 150 reflections intensity decay: 2.6%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.078
  • wR(F 2) = 0.202
  • S = 1.07
  • 2407 reflections
  • 284 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: DIFRAC (Gabe & White, 1993 [triangle]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043687/xu2465sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043687/xu2465Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Scientific Research Fund of Chengdu Medical College, China (No. CYZ07–010).

supplementary crystallographic information

Comment

Steroid sapogenins are a class of important compounds, which present many significant bioactivities in platelet aggregation, arteriosclerosis and so on (Huang et al., 2002). The hecogenin (25R-5a-Spirostane-3b-ol-12-one) is an important steroid (Djerassi et al., 1962; Chakravarti et al., 1953), which has been isolated from Chinese traditional medicine Tribulus terrestris. The title compound was recently obtained by Jone's oxidation of hecogenin in our laboratory, and its crystal structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The molecule contains six alicylic and heterocyclic rings with trans-fused. Cyclohexane rings A (C1/C2/C3/C4/C5/C10), B (C5/C6/C7/C8/C9/C10), C (C8/C9/C11/C12/C13/C14) and six-membered heterocyclic ring F (C22/C23/C24/C25/C26/O4) adopt chair conformation. Cyclopetane ring D (C13/C14/C15/C16/C17) and five-membered heterocyclic ring E (C16/C17/C20/C22/O3) have envelope conformation.

Experimental

A solution of hecogenin (200 mg) in acetone (10 ml) was added by Jone's reagent drops by drops. The reaction solution was stirred for 20 min and quenched by water (10 ml). The mixture was extracted with CH2Cl2 (5 ml×3) and the organic phase was concentrated to give the title compound. The crystals suitable for X-ray analysis were obtained by slow evaporation from acetone solution at room temperature. The absolute configuration was deduced not by the present experiment but by the synthetic path from Hecognin, whose absolute configuration is known.

Refinement

H atoms were located geometrically with C—H = 0.93–0.98 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C). Friedel pairs were merged and the absolute configuration was not determined.

Figures

Fig. 1.
The molecular structure of the title compound.

Crystal data

C27H40O4F(000) = 936
Mr = 428.59Dx = 1.168 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 12 reflections
a = 12.660 (3) Åθ = 4.3–5.6°
b = 6.443 (3) ŵ = 0.08 mm1
c = 30.167 (3) ÅT = 292 K
β = 98.02 (3)°Block, colourless
V = 2436.8 (14) Å30.44 × 0.40 × 0.30 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.136
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.4°
graphiteh = −15→15
ω/2θ scansk = −7→7
2837 measured reflectionsl = −35→36
2407 independent reflections3 standard reflections every 150 reflections
919 reflections with I > 2σ(I) intensity decay: 2.6%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0752P)2] where P = (Fo2 + 2Fc2)/3
2407 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.7481 (5)0.2933 (11)0.4779 (2)0.0958 (19)
O20.6375 (4)0.7105 (13)0.7368 (2)0.117 (3)
O31.0031 (4)0.7234 (9)0.83970 (17)0.0791 (17)
O40.9410 (5)1.0093 (10)0.8752 (2)0.096 (2)
C10.6736 (5)0.3818 (15)0.5873 (2)0.076 (2)
H1A0.61560.34210.60350.091*
H1B0.66640.52910.58090.091*
C20.6615 (6)0.2652 (16)0.5435 (3)0.086 (2)
H2A0.59960.31820.52430.104*
H2B0.64850.12000.54930.104*
C30.7588 (7)0.2814 (15)0.5186 (4)0.079 (2)
C40.8630 (6)0.2756 (16)0.5476 (2)0.080 (2)
H4A0.91740.32460.53040.096*
H4B0.87950.13250.55570.096*
C50.8694 (5)0.4009 (12)0.5893 (2)0.0635 (19)
H50.85850.54640.58040.076*
C60.9812 (5)0.3854 (15)0.6177 (2)0.081 (2)
H6A1.03530.42460.59950.097*
H6B0.99440.24290.62730.097*
C70.9890 (5)0.5280 (16)0.6591 (2)0.076 (3)
H7A1.05770.50770.67730.092*
H7B0.98480.67170.64940.092*
C80.9014 (5)0.4848 (13)0.6870 (2)0.0585 (19)
H80.91360.34540.69960.070*
C90.7921 (5)0.4852 (11)0.6594 (2)0.0541 (18)
H90.78520.62550.64680.065*
C100.7822 (6)0.3447 (10)0.6186 (3)0.056 (2)
C110.7016 (5)0.4700 (13)0.6871 (2)0.075 (2)
H11A0.69660.32750.69700.089*
H11B0.63540.50320.66810.089*
C120.7124 (7)0.6099 (15)0.7276 (3)0.081 (2)
C130.8200 (5)0.5999 (11)0.7571 (2)0.0549 (19)
C140.9030 (5)0.6332 (12)0.7254 (2)0.0607 (19)
H140.88640.76920.71160.073*
C151.0041 (6)0.6679 (15)0.7598 (3)0.088 (3)
H15A1.03130.53730.77270.105*
H15B1.05960.73570.74590.105*
C160.9656 (6)0.8067 (14)0.7951 (2)0.076 (2)
H160.98780.95110.79220.091*
C170.8411 (5)0.7863 (14)0.7912 (2)0.065 (2)
H170.80730.91260.77780.078*
C180.8278 (6)0.3872 (12)0.7799 (2)0.077 (2)
H18A0.88140.39150.80580.115*
H18B0.84670.28450.75940.115*
H18C0.76020.35230.78890.115*
C190.7859 (7)0.1141 (13)0.6329 (3)0.076 (2)
H19A0.72760.08550.64920.114*
H19B0.85210.08630.65160.114*
H19C0.78010.02750.60680.114*
C200.8194 (6)0.7661 (15)0.8389 (2)0.076 (2)
H200.79650.62270.84280.091*
C210.7318 (6)0.9049 (17)0.8505 (3)0.098 (3)
H21A0.75271.04740.84830.146*
H21B0.71900.87650.88050.146*
H21C0.66780.87960.83010.146*
C220.9283 (7)0.7917 (16)0.8671 (3)0.084 (3)
C230.9441 (6)0.6702 (13)0.9110 (3)0.078 (2)
H23A0.94250.52240.90480.093*
H23B0.88670.70170.92820.093*
C241.0524 (8)0.729 (2)0.9385 (3)0.118 (4)
H24A1.05830.66380.96780.141*
H24B1.11000.67680.92350.141*
C251.0628 (8)0.956 (2)0.9439 (4)0.123 (4)
H251.00631.00320.96070.147*
C261.0440 (8)1.0586 (18)0.8978 (3)0.109 (3)
H26A1.05071.20800.90120.130*
H26B1.09771.01160.88010.130*
C271.1729 (7)1.030 (3)0.9702 (3)0.164 (5)
H27A1.22711.02050.95100.247*
H27B1.19170.94400.99600.247*
H27C1.16681.17180.97950.247*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.146 (5)0.071 (4)0.068 (4)−0.012 (4)0.005 (3)−0.003 (4)
O20.076 (4)0.156 (7)0.117 (4)0.044 (4)0.003 (3)−0.043 (5)
O30.081 (4)0.082 (4)0.074 (3)0.026 (3)0.009 (3)−0.004 (3)
O40.105 (5)0.079 (5)0.101 (4)0.006 (4)0.000 (4)−0.005 (4)
C10.064 (5)0.082 (6)0.087 (5)−0.003 (5)0.029 (4)−0.009 (5)
C20.092 (6)0.066 (6)0.098 (6)−0.015 (5)0.001 (5)−0.013 (6)
C30.098 (7)0.051 (5)0.087 (7)−0.001 (5)0.011 (6)−0.002 (6)
C40.092 (6)0.085 (6)0.068 (5)−0.020 (6)0.029 (4)−0.013 (6)
C50.066 (5)0.054 (5)0.072 (5)−0.007 (4)0.014 (4)0.003 (4)
C60.074 (6)0.073 (6)0.102 (6)−0.015 (4)0.037 (5)−0.012 (6)
C70.054 (4)0.097 (7)0.077 (5)−0.005 (5)0.010 (4)−0.003 (5)
C80.049 (4)0.055 (5)0.072 (5)0.000 (4)0.013 (4)−0.009 (4)
C90.062 (4)0.043 (4)0.059 (4)−0.008 (4)0.014 (4)0.015 (4)
C100.059 (5)0.036 (4)0.075 (5)0.006 (3)0.019 (4)0.004 (4)
C110.065 (5)0.066 (6)0.091 (6)−0.001 (4)0.007 (4)−0.009 (5)
C120.068 (6)0.082 (6)0.097 (6)0.007 (5)0.028 (5)−0.013 (6)
C130.053 (4)0.046 (4)0.068 (5)0.004 (4)0.018 (4)0.013 (4)
C140.065 (5)0.047 (4)0.071 (5)0.008 (4)0.015 (4)0.024 (4)
C150.063 (5)0.113 (8)0.089 (6)−0.002 (5)0.018 (5)−0.024 (6)
C160.101 (7)0.056 (5)0.074 (5)0.021 (5)0.021 (5)0.008 (4)
C170.071 (5)0.063 (5)0.064 (5)0.005 (5)0.018 (4)0.025 (4)
C180.110 (6)0.050 (4)0.076 (5)0.004 (5)0.032 (5)0.014 (4)
C190.107 (6)0.047 (5)0.075 (5)0.001 (5)0.015 (5)0.002 (4)
C200.086 (6)0.059 (5)0.084 (6)0.007 (5)0.016 (5)0.006 (5)
C210.104 (7)0.108 (7)0.084 (6)0.019 (6)0.028 (5)−0.010 (6)
C220.102 (7)0.063 (6)0.083 (6)0.023 (6)0.005 (6)−0.005 (6)
C230.086 (6)0.067 (6)0.081 (5)0.004 (5)0.014 (5)0.013 (5)
C240.127 (9)0.143 (13)0.079 (7)0.019 (8)−0.002 (6)0.019 (7)
C250.105 (8)0.142 (13)0.114 (8)0.007 (8)−0.007 (7)−0.026 (7)
C260.132 (9)0.093 (9)0.102 (6)0.002 (7)0.021 (7)−0.028 (6)
C270.129 (9)0.221 (16)0.133 (8)−0.024 (11)−0.015 (7)−0.036 (11)

Geometric parameters (Å, °)

O1—C31.220 (8)C13—C181.530 (10)
O2—C121.211 (9)C13—C171.579 (11)
O3—C221.412 (9)C14—C151.547 (9)
O3—C161.464 (8)C14—H140.9800
O4—C261.421 (9)C15—C161.523 (10)
O4—C221.428 (12)C15—H15A0.9700
C1—C21.509 (10)C15—H15B0.9700
C1—C101.574 (9)C16—C171.569 (9)
C1—H1A0.9700C16—H160.9800
C1—H1B0.9700C17—C201.509 (10)
C2—C31.533 (11)C17—H170.9800
C2—H2A0.9700C18—H18A0.9600
C2—H2B0.9700C18—H18B0.9600
C3—C41.478 (10)C18—H18C0.9600
C4—C51.488 (10)C19—H19A0.9600
C4—H4A0.9700C19—H19B0.9600
C4—H4B0.9700C19—H19C0.9600
C5—C61.552 (9)C20—C211.504 (10)
C5—C101.549 (9)C20—C221.524 (10)
C5—H50.9800C20—H200.9800
C6—C71.543 (11)C21—H21A0.9600
C6—H6A0.9700C21—H21B0.9600
C6—H6B0.9700C21—H21C0.9600
C7—C81.508 (9)C22—C231.529 (11)
C7—H7A0.9700C23—C241.546 (12)
C7—H7B0.9700C23—H23A0.9700
C8—C141.500 (9)C23—H23B0.9700
C8—C91.511 (8)C24—C251.478 (17)
C8—H80.9800C24—H24A0.9700
C9—C111.512 (9)C24—H24B0.9700
C9—C101.521 (9)C25—C261.529 (14)
C9—H90.9800C25—C271.579 (13)
C10—C191.546 (11)C25—H250.9800
C11—C121.510 (10)C26—H26A0.9700
C11—H11A0.9700C26—H26B0.9700
C11—H11B0.9700C27—H27A0.9600
C12—C131.521 (10)C27—H27B0.9600
C13—C141.533 (9)C27—H27C0.9600
C22—O3—C16105.3 (6)C15—C14—H14105.3
C26—O4—C22112.1 (7)C16—C15—C14103.9 (6)
C2—C1—C10115.0 (6)C16—C15—H15A111.0
C2—C1—H1A108.5C14—C15—H15A111.0
C10—C1—H1A108.5C16—C15—H15B111.0
C2—C1—H1B108.5C14—C15—H15B111.0
C10—C1—H1B108.5H15A—C15—H15B109.0
H1A—C1—H1B107.5O3—C16—C15109.5 (7)
C1—C2—C3113.9 (7)O3—C16—C17103.5 (6)
C1—C2—H2A108.8C15—C16—C17108.3 (6)
C3—C2—H2A108.8O3—C16—H16111.7
C1—C2—H2B108.8C15—C16—H16111.7
C3—C2—H2B108.8C17—C16—H16111.8
H2A—C2—H2B107.7C20—C17—C16104.5 (5)
O1—C3—C4124.2 (8)C20—C17—C13121.2 (7)
O1—C3—C2120.9 (8)C16—C17—C13100.9 (6)
C4—C3—C2114.9 (8)C20—C17—H17109.8
C3—C4—C5115.2 (7)C16—C17—H17109.8
C3—C4—H4A108.5C13—C17—H17109.8
C5—C4—H4A108.5C13—C18—H18A109.5
C3—C4—H4B108.5C13—C18—H18B109.5
C5—C4—H4B108.5H18A—C18—H18B109.5
H4A—C4—H4B107.5C13—C18—H18C109.5
C4—C5—C6111.7 (6)H18A—C18—H18C109.5
C4—C5—C10113.4 (6)H18B—C18—H18C109.5
C6—C5—C10109.7 (6)C10—C19—H19A109.5
C4—C5—H5107.3C10—C19—H19B109.5
C6—C5—H5107.3H19A—C19—H19B109.5
C10—C5—H5107.3C10—C19—H19C109.5
C5—C6—C7111.1 (6)H19A—C19—H19C109.5
C5—C6—H6A109.4H19B—C19—H19C109.5
C7—C6—H6A109.4C21—C20—C17114.2 (7)
C5—C6—H6B109.4C21—C20—C22116.4 (8)
C7—C6—H6B109.4C17—C20—C22104.6 (6)
H6A—C6—H6B108.0C21—C20—H20107.1
C8—C7—C6111.8 (7)C17—C20—H20107.1
C8—C7—H7A109.3C22—C20—H20107.1
C6—C7—H7A109.3C20—C21—H21A109.5
C8—C7—H7B109.3C20—C21—H21B109.5
C6—C7—H7B109.3H21A—C21—H21B109.5
H7A—C7—H7B107.9C20—C21—H21C109.5
C14—C8—C7112.4 (6)H21A—C21—H21C109.5
C14—C8—C9109.6 (6)H21B—C21—H21C109.5
C7—C8—C9112.5 (6)O3—C22—O4109.7 (8)
C14—C8—H8107.4O3—C22—C20105.6 (7)
C7—C8—H8107.4O4—C22—C20105.8 (7)
C9—C8—H8107.4O3—C22—C23109.3 (7)
C8—C9—C11113.8 (5)O4—C22—C23110.9 (8)
C8—C9—C10114.2 (6)C20—C22—C23115.3 (8)
C11—C9—C10115.2 (6)C22—C23—C24109.8 (7)
C8—C9—H9103.9C22—C23—H23A109.7
C11—C9—H9103.9C24—C23—H23A109.7
C10—C9—H9103.9C22—C23—H23B109.7
C9—C10—C5109.8 (5)C24—C23—H23B109.7
C9—C10—C19110.5 (6)H23A—C23—H23B108.2
C5—C10—C19112.9 (6)C25—C24—C23111.1 (9)
C9—C10—C1111.2 (5)C25—C24—H24A109.4
C5—C10—C1104.8 (6)C23—C24—H24A109.4
C19—C10—C1107.6 (6)C25—C24—H24B109.4
C9—C11—C12114.7 (6)C23—C24—H24B109.4
C9—C11—H11A108.6H24A—C24—H24B108.0
C12—C11—H11A108.6C24—C25—C26109.1 (10)
C9—C11—H11B108.6C24—C25—C27114.5 (12)
C12—C11—H11B108.6C26—C25—C27109.9 (10)
H11A—C11—H11B107.6C24—C25—H25107.7
O2—C12—C11121.2 (8)C26—C25—H25107.7
O2—C12—C13123.7 (8)C27—C25—H25107.7
C11—C12—C13114.9 (7)O4—C26—C25110.9 (9)
C12—C13—C14105.4 (5)O4—C26—H26A109.5
C12—C13—C18107.3 (6)C25—C26—H26A109.5
C14—C13—C18113.6 (6)O4—C26—H26B109.5
C12—C13—C17113.9 (6)C25—C26—H26B109.5
C14—C13—C17103.4 (6)H26A—C26—H26B108.0
C18—C13—C17113.2 (5)C25—C27—H27A109.5
C8—C14—C13117.2 (6)C25—C27—H27B109.5
C8—C14—C15122.1 (6)H27A—C27—H27B109.5
C13—C14—C15100.1 (5)C25—C27—H27C109.5
C8—C14—H14105.3H27A—C27—H27C109.5
C13—C14—H14105.3H27B—C27—H27C109.5
C10—C1—C2—C3−47.3 (10)C18—C13—C14—C859.6 (8)
C1—C2—C3—O1−143.0 (9)C17—C13—C14—C8−177.3 (6)
C1—C2—C3—C438.6 (12)C12—C13—C14—C15168.1 (6)
O1—C3—C4—C5138.9 (9)C18—C13—C14—C15−74.7 (7)
C2—C3—C4—C5−42.7 (11)C17—C13—C14—C1548.4 (7)
C3—C4—C5—C6179.8 (7)C8—C14—C15—C16−173.1 (7)
C3—C4—C5—C1055.3 (10)C13—C14—C15—C16−41.8 (8)
C4—C5—C6—C7176.0 (7)C22—O3—C16—C15−153.1 (7)
C10—C5—C6—C7−57.5 (8)C22—O3—C16—C17−37.9 (8)
C5—C6—C7—C854.8 (9)C14—C15—C16—O3132.2 (7)
C6—C7—C8—C14−175.6 (6)C14—C15—C16—C1720.1 (8)
C6—C7—C8—C9−51.3 (10)O3—C16—C17—C2019.6 (8)
C14—C8—C9—C11−46.8 (8)C15—C16—C17—C20135.7 (8)
C7—C8—C9—C11−172.5 (7)O3—C16—C17—C13−106.9 (6)
C14—C8—C9—C10178.2 (6)C15—C16—C17—C139.2 (7)
C7—C8—C9—C1052.4 (9)C12—C13—C17—C2096.2 (8)
C8—C9—C10—C5−54.8 (7)C14—C13—C17—C20−150.1 (6)
C11—C9—C10—C5170.8 (6)C18—C13—C17—C20−26.7 (9)
C8—C9—C10—C1970.3 (8)C12—C13—C17—C16−149.3 (6)
C11—C9—C10—C19−64.1 (8)C14—C13—C17—C16−35.5 (6)
C8—C9—C10—C1−170.2 (6)C18—C13—C17—C1687.8 (7)
C11—C9—C10—C155.4 (8)C16—C17—C20—C21132.4 (7)
C4—C5—C10—C9−177.9 (6)C13—C17—C20—C21−114.9 (8)
C6—C5—C10—C956.5 (7)C16—C17—C20—C224.1 (9)
C4—C5—C10—C1958.5 (9)C13—C17—C20—C22116.8 (8)
C6—C5—C10—C19−67.1 (8)C16—O3—C22—O4−72.2 (8)
C4—C5—C10—C1−58.4 (8)C16—O3—C22—C2041.5 (9)
C6—C5—C10—C1176.0 (6)C16—O3—C22—C23166.1 (7)
C2—C1—C10—C9173.9 (7)C26—O4—C22—O3−61.1 (9)
C2—C1—C10—C555.4 (8)C26—O4—C22—C20−174.6 (6)
C2—C1—C10—C19−64.9 (9)C26—O4—C22—C2359.7 (9)
C8—C9—C11—C1245.3 (9)C21—C20—C22—O3−154.6 (8)
C10—C9—C11—C12179.9 (6)C17—C20—C22—O3−27.6 (10)
C9—C11—C12—O2135.2 (9)C21—C20—C22—O4−38.3 (10)
C9—C11—C12—C13−49.4 (9)C17—C20—C22—O488.7 (9)
O2—C12—C13—C14−133.0 (9)C21—C20—C22—C2384.7 (10)
C11—C12—C13—C1451.8 (9)C17—C20—C22—C23−148.4 (8)
O2—C12—C13—C18105.7 (10)O3—C22—C23—C2467.5 (10)
C11—C12—C13—C18−69.5 (8)O4—C22—C23—C24−53.5 (10)
O2—C12—C13—C17−20.4 (11)C20—C22—C23—C24−173.8 (8)
C11—C12—C13—C17164.4 (6)C22—C23—C24—C2552.5 (12)
C7—C8—C14—C13−177.9 (6)C23—C24—C25—C26−54.3 (12)
C9—C8—C14—C1356.3 (8)C23—C24—C25—C27−178.0 (7)
C7—C8—C14—C15−54.1 (9)C22—O4—C26—C25−62.2 (11)
C9—C8—C14—C15−180.0 (7)C24—C25—C26—O459.1 (12)
C12—C13—C14—C8−57.6 (8)C27—C25—C26—O4−174.6 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2465).

References

  • Chakravarti, C., Lemin, A. J., Martines, G. & Sondheimer, F. (1953). J. Am. Chem. Soc.75, 4885–4887.
  • Djerassi, C., Chakravarti, R. N. & Mitra, M. N. (1962). Nature (London), 193, 1071–1072.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Gabe, E. J. & White, P. S. (1993). American Crystallographic Association Pittsburgh Meeting, Abstract PA104.
  • Huang, J. W., Jiang, S. H., Tan, C. H. & Zhu, D. Y. (2002). Chin. J. Org. Chem.22, 917–921.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography