PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o231.
Published online 2009 January 8. doi:  10.1107/S1600536808043274
PMCID: PMC2968407

Methyl 4-(3-chloro­prop­oxy)-3-methoxy­benzoate

Abstract

In the title compound, C12H15ClO4, the molecules are linked by C—H(...)O interactions.

Related literature

For general background, see: Knesl et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o231-scheme1.jpg

Experimental

Crystal data

  • C12H15ClO4
  • M r = 258.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o231-efi1.jpg
  • a = 8.4980 (17) Å
  • b = 17.349 (4) Å
  • c = 8.8440 (18) Å
  • β = 106.46 (3)°
  • V = 1250.5 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 294 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.914, T max = 0.970
  • 2431 measured reflections
  • 2274 independent reflections
  • 1575 reflections with I > 2σ(I)
  • R int = 0.048
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.176
  • S = 1.01
  • 2274 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks D, I. DOI: 10.1107/S1600536808043274/hk2602sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043274/hk2602Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of our ongoing studies on quinazoline derivatives (Knesl et al., 2006), we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4-C9) is, of course, planar. The intramolecular C-H···O hydrogen bond (Table 1) results in the formation of a five-membered ring B (O1/C1-C3/H1A), having envelope conformation with C2 atom displaced by -0.668 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, methyl 3-methoxy-4-hydroxybenzoate (55 mmol), 1-bromo-3-chloropropane (165 mmol) and potassium carbonate (275 mmol) were mixed with DMF (60 ml), and then the mixture was heated to reflux for 2 h. Reaction progress was monitored by TLC. After cooling and filtration, the title compound was obtained (yield; 93.7%, m.p. 384 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C12H15ClO4F(000) = 544
Mr = 258.69Dx = 1.374 Mg m3
Monoclinic, P21/cMelting point: 384 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.4980 (17) ÅCell parameters from 25 reflections
b = 17.349 (4) Åθ = 10–13°
c = 8.8440 (18) ŵ = 0.31 mm1
β = 106.46 (3)°T = 294 K
V = 1250.5 (5) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1575 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
graphiteθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 0→10
Absorption correction: ψ scan (North et al., 1968)k = 0→20
Tmin = 0.914, Tmax = 0.970l = −10→10
2431 measured reflections3 standard reflections every 120 min
2274 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.050P)2 + 3.3P] where P = (Fo2 + 2Fc2)/3
2274 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl0.27901 (16)0.58276 (8)0.10729 (14)0.0679 (4)
O10.3056 (3)0.60776 (15)0.5453 (3)0.0480 (7)
O20.1798 (3)0.50211 (15)0.6779 (3)0.0491 (7)
O3−0.2908 (4)0.74808 (19)0.7610 (4)0.0711 (10)
O4−0.2715 (3)0.62804 (17)0.8531 (4)0.0578 (8)
C10.4233 (6)0.5519 (3)0.2872 (5)0.0580 (12)
H1A0.36930.51700.34240.070*
H1B0.51190.52390.26270.070*
C20.4929 (5)0.6187 (3)0.3921 (5)0.0554 (11)
H2A0.54090.65460.33370.066*
H2B0.58030.60000.48070.066*
C30.3697 (5)0.6615 (2)0.4548 (5)0.0532 (11)
H3A0.42230.70430.52070.064*
H3B0.28190.68170.36840.064*
C40.1809 (5)0.6315 (2)0.6028 (4)0.0401 (9)
C50.1190 (5)0.7053 (2)0.5911 (5)0.0488 (10)
H5A0.16560.74380.54440.059*
C6−0.0123 (5)0.7224 (2)0.6489 (5)0.0489 (10)
H6A−0.05470.77220.63900.059*
C7−0.0814 (5)0.6657 (2)0.7216 (4)0.0424 (9)
C8−0.0174 (5)0.5915 (2)0.7335 (4)0.0404 (9)
H8A−0.06380.55330.78110.048*
C90.1129 (4)0.5731 (2)0.6768 (4)0.0378 (8)
C100.1078 (5)0.4411 (2)0.7422 (5)0.0495 (10)
H10A0.16310.39370.73420.074*
H10B−0.00610.43660.68490.074*
H10C0.11760.45170.85110.074*
C11−0.2236 (5)0.6865 (2)0.7781 (5)0.0478 (10)
C12−0.4095 (6)0.6411 (3)0.9117 (6)0.0670 (14)
H12A−0.43080.59570.96460.101*
H12B−0.50390.65310.82550.101*
H12C−0.38650.68350.98460.101*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0710 (8)0.0750 (8)0.0547 (7)0.0031 (6)0.0130 (6)0.0007 (6)
O10.0477 (16)0.0459 (16)0.0542 (17)−0.0020 (12)0.0206 (13)0.0082 (13)
O20.0481 (16)0.0364 (15)0.0657 (19)0.0022 (12)0.0211 (14)0.0077 (13)
O30.079 (2)0.057 (2)0.086 (2)0.0270 (17)0.037 (2)0.0083 (18)
O40.0487 (17)0.0563 (19)0.074 (2)0.0088 (14)0.0267 (16)−0.0028 (16)
C10.060 (3)0.055 (3)0.062 (3)0.006 (2)0.022 (2)0.006 (2)
C20.048 (2)0.063 (3)0.057 (3)−0.003 (2)0.018 (2)0.008 (2)
C30.059 (3)0.044 (2)0.054 (3)−0.009 (2)0.012 (2)0.004 (2)
C40.041 (2)0.043 (2)0.036 (2)−0.0010 (17)0.0103 (16)−0.0003 (16)
C50.063 (3)0.034 (2)0.050 (2)−0.0083 (19)0.016 (2)−0.0017 (18)
C60.056 (3)0.035 (2)0.051 (2)0.0081 (18)0.006 (2)−0.0028 (18)
C70.043 (2)0.042 (2)0.041 (2)0.0039 (17)0.0092 (17)−0.0063 (17)
C80.039 (2)0.040 (2)0.040 (2)−0.0037 (16)0.0073 (16)0.0028 (17)
C90.041 (2)0.0330 (19)0.040 (2)0.0027 (16)0.0114 (16)−0.0013 (16)
C100.057 (3)0.034 (2)0.062 (3)0.0011 (18)0.023 (2)0.0053 (19)
C110.054 (2)0.042 (2)0.043 (2)0.0044 (19)0.0058 (19)−0.0037 (18)
C120.052 (3)0.083 (4)0.073 (3)0.007 (2)0.030 (2)−0.014 (3)

Geometric parameters (Å, °)

Cl—C11.794 (5)C4—C51.378 (5)
O1—C31.433 (5)C4—C91.415 (5)
O1—C41.362 (4)C5—C61.385 (6)
O2—C91.355 (4)C5—H5A0.9300
O2—C101.420 (4)C6—C71.394 (6)
O3—C111.201 (5)C6—H6A0.9300
O4—C111.336 (5)C7—C81.390 (5)
O4—C121.429 (5)C7—C111.478 (6)
C1—C21.498 (6)C8—C91.377 (5)
C1—H1A0.9700C8—H8A0.9300
C1—H1B0.9700C10—H10A0.9600
C2—C31.512 (6)C10—H10B0.9600
C2—H2A0.9700C10—H10C0.9600
C2—H2B0.9700C12—H12A0.9600
C3—H3A0.9700C12—H12B0.9600
C3—H3B0.9700C12—H12C0.9600
C4—O1—C3118.1 (3)C5—C6—C7120.5 (4)
C9—O2—C10116.9 (3)C5—C6—H6A119.8
C11—O4—C12117.1 (3)C7—C6—H6A119.8
Cl—C1—H1A109.3C8—C7—C6118.9 (4)
Cl—C1—H1B109.3C8—C7—C11122.7 (4)
C2—C1—Cl111.6 (3)C6—C7—C11118.4 (4)
C2—C1—H1A109.3C9—C8—C7121.6 (4)
C2—C1—H1B109.3C9—C8—H8A119.2
H1A—C1—H1B108.0C7—C8—H8A119.2
C1—C2—C3114.5 (4)O2—C9—C8125.9 (3)
C1—C2—H2A108.6O2—C9—C4115.4 (3)
C1—C2—H2B108.6C8—C9—C4118.6 (3)
C3—C2—H2A108.6O2—C10—H10A109.5
C3—C2—H2B108.6O2—C10—H10B109.5
H2A—C2—H2B107.6H10A—C10—H10B109.5
O1—C3—C2107.3 (3)O2—C10—H10C109.5
O1—C3—H3A110.3H10A—C10—H10C109.5
O1—C3—H3B110.3H10B—C10—H10C109.5
C2—C3—H3A110.3O3—C11—O4122.5 (4)
C2—C3—H3B110.3O3—C11—C7125.4 (4)
H3A—C3—H3B108.5O4—C11—C7112.1 (3)
O1—C4—C5125.0 (3)O4—C12—H12A109.5
O1—C4—C9114.8 (3)O4—C12—H12B109.5
C5—C4—C9120.2 (4)H12A—C12—H12B109.5
C4—C5—C6120.2 (4)O4—C12—H12C109.5
C4—C5—H5A119.9H12A—C12—H12C109.5
C6—C5—H5A119.9H12B—C12—H12C109.5
Cl—C1—C2—C365.9 (4)C10—O2—C9—C4−176.1 (3)
C4—O1—C3—C2−174.3 (3)C7—C8—C9—O2−177.5 (4)
C1—C2—C3—O160.5 (5)C7—C8—C9—C4−0.9 (6)
C3—O1—C4—C5−5.2 (6)O1—C4—C9—O2−0.9 (5)
C3—O1—C4—C9173.8 (3)C5—C4—C9—O2178.2 (4)
O1—C4—C5—C6177.6 (4)O1—C4—C9—C8−177.9 (3)
C9—C4—C5—C6−1.3 (6)C5—C4—C9—C81.2 (6)
C4—C5—C6—C71.1 (6)C12—O4—C11—O30.8 (6)
C5—C6—C7—C8−0.7 (6)C12—O4—C11—C7−179.4 (3)
C5—C6—C7—C11−178.7 (4)C8—C7—C11—O3−174.5 (4)
C6—C7—C8—C90.6 (6)C6—C7—C11—O33.4 (6)
C11—C7—C8—C9178.5 (4)C8—C7—C11—O45.6 (5)
C10—O2—C9—C80.6 (6)C6—C7—C11—O4−176.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O10.972.562.906 (5)101
C1—H1B···O2i0.972.563.429 (6)149
C2—H2A···O3ii0.972.413.358 (6)164

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2602).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft. The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Knesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286–297. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography