PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o382.
Published online 2009 January 23. doi:  10.1107/S1600536809002657
PMCID: PMC2968402

N-Cyclo­heptyl­idene-N′-(2,4-dinitro­phenyl)hydrazine

Abstract

The title compound, C13H16N4O4, is a new hydrazone. An intra­molecular N—H(...)O hydrogen bond generates a six-membered ring, producing an S(6) ring motif. The nitro groups in the ortho and para positions are almost coplanar with the benzene ring to which they are bound, making dihedral angles of 0.60 (11) and 3.18 (11)°, respectively. Pairs of inter­molecular C—H(...)O hydrogen bonds link neighbouring mol­ecules into inversion dimers with R 2 2(10) motifs. The crystal structure is further stabilized by inter­molecular π–π inter­actions, with a benzene centroid-to-centroid distance of 3.6601 (4) Å.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related literature on the applications of hydrazone, see, for example: Niknam et al., (2005 [triangle]); Guillaumont & Nakamura (2000 [triangle]); Raj & Kurup (2006 [triangle]); Okabe et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o382-scheme1.jpg

Experimental

Crystal data

  • C13H16N4O4
  • M r = 292.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o382-efi1.jpg
  • a = 6.9721 (1) Å
  • b = 23.7359 (5) Å
  • c = 8.2274 (2) Å
  • β = 102.351 (1)°
  • V = 1330.03 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 100.0 (1) K
  • 0.51 × 0.45 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.946, T max = 0.991
  • 26146 measured reflections
  • 5824 independent reflections
  • 4916 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.113
  • S = 1.04
  • 5824 reflections
  • 194 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002657/kj2114sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002657/kj2114Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

2,4-Dinitrophenylhydrazones play an important role as stabilizers for the detection and protection of the carbonyl group (Niknam et al., 2005). 2,4-Dinitrophenylhydrazone derivatives are widely used in as dyes (Guillaumont & Nakamura, 2000). They are also found to have versatile coordinating abilities towards different metal ions (Raj & Kurup, 2006). In addition, some phenylhydrazone derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe et al., 1993).

The title compound (Fig. 1) is a new hydrazone. An intramolecular N—H···O hydrogen bond generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). The nitro groups in the ortho and para positions are almost coplanar with the benzene ring to which they are bound, making dihedral angles of 0.60 (11)° and 3.18 (11)°, respectively. The cycloheptanone ring is puckered with a total puckering amplitude, Q = 0.7820 (8) Å. Pairs of intermolecular C—H···O hydrogen bonds link neighbouring molecules into dimers with R22(10) motifs (Table 1, Fig. 2). The crystal structure is further stabilized by intermolecular π–π interactions [Cg1···Cg1(1 - x, -y, 1 - z) = 3.6601 (4) Å, with Cg the centroid of the benzene ring].

Experimental

The title compound was synthesized based on the reported procedure (Okabe et al. 1993). Single crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of the resulted compound in DMF.

Refinement

The H atom bound to N1 was located from the difference Fourier map and refined freely, see Table 1. The rest of the H atoms were positioned geometrically and refined in a riding model approximation with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dash lines.
Fig. 2.
The crystal packing of the title compound, viewed down the c-axis showing dimer formation. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C13H16N4O4F(000) = 616
Mr = 292.30Dx = 1.460 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9967 reflections
a = 6.9721 (1) Åθ = 2.7–40.2°
b = 23.7359 (5) ŵ = 0.11 mm1
c = 8.2274 (2) ÅT = 100 K
β = 102.351 (1)°Plate, yellow
V = 1330.03 (5) Å30.51 × 0.45 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5824 independent reflections
Radiation source: fine-focus sealed tube4916 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 35.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −11→11
Tmin = 0.946, Tmax = 0.991k = −38→38
26146 measured reflectionsl = −12→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0637P)2 + 0.2167P] where P = (Fo2 + 2Fc2)/3
5824 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Experimental. The low-temperature data was collected with the Oxford Cryosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.71910 (9)−0.13041 (2)0.17783 (8)0.02285 (12)
O20.81378 (8)−0.04726 (2)0.11828 (8)0.02030 (12)
O30.01157 (8)−0.08982 (3)0.49098 (7)0.02059 (12)
O40.17434 (9)−0.16037 (2)0.41905 (8)0.02340 (13)
N10.62623 (9)0.04321 (3)0.18111 (8)0.01434 (11)
N20.58494 (9)0.10007 (2)0.19219 (8)0.01495 (11)
N30.70085 (9)−0.07900 (3)0.17430 (8)0.01533 (11)
N40.14350 (9)−0.10960 (3)0.42854 (8)0.01614 (12)
C10.34898 (10)0.02454 (3)0.30373 (9)0.01400 (12)
H1A0.32280.06380.30540.017*
C20.23044 (10)−0.01240 (3)0.36477 (9)0.01428 (12)
H2A0.12310.00120.40770.017*
C30.26847 (10)−0.07040 (3)0.36355 (8)0.01365 (12)
C40.42249 (10)−0.09135 (3)0.30138 (8)0.01385 (12)
H4A0.4470−0.13070.30170.017*
C50.54189 (9)−0.05386 (3)0.23798 (8)0.01284 (11)
C60.51047 (9)0.00541 (3)0.23793 (8)0.01249 (11)
C70.71332 (10)0.13537 (3)0.16026 (9)0.01369 (12)
C80.90306 (10)0.11873 (3)0.11327 (9)0.01459 (12)
H8A0.87340.1078−0.00560.018*
H8B0.95490.08490.17840.018*
C91.06529 (10)0.16349 (3)0.13962 (9)0.01612 (13)
H9A1.07780.17960.25240.019*
H9B1.19110.14470.13620.019*
C101.03488 (12)0.21200 (3)0.01374 (11)0.02085 (15)
H10A1.16290.23070.01870.025*
H10B0.99200.1959−0.09930.025*
C110.88606 (11)0.25661 (3)0.03869 (10)0.01808 (13)
H11A0.93360.27470.14830.022*
H11B0.88010.2860−0.04750.022*
C120.67896 (11)0.23445 (3)0.03073 (10)0.01820 (14)
H12A0.63590.2131−0.07410.022*
H12B0.58900.26690.02760.022*
C130.66109 (11)0.19625 (3)0.17764 (10)0.01816 (13)
H13A0.74710.21150.27970.022*
H13B0.52420.19820.19300.022*
H1N10.727 (2)0.0296 (6)0.1432 (17)0.036 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0256 (3)0.0139 (2)0.0313 (3)0.0047 (2)0.0112 (2)−0.0015 (2)
O20.0173 (2)0.0201 (2)0.0264 (3)−0.00068 (19)0.0112 (2)−0.0007 (2)
O30.0189 (2)0.0239 (3)0.0216 (3)−0.0013 (2)0.0100 (2)0.0012 (2)
O40.0262 (3)0.0139 (2)0.0317 (3)−0.0030 (2)0.0096 (2)0.0025 (2)
N10.0135 (2)0.0119 (2)0.0186 (3)−0.00005 (18)0.00577 (19)0.00008 (19)
N20.0142 (2)0.0117 (2)0.0198 (3)0.00064 (18)0.0055 (2)0.0012 (2)
N30.0145 (2)0.0153 (3)0.0166 (3)0.00157 (19)0.00412 (19)−0.0017 (2)
N40.0161 (3)0.0163 (3)0.0162 (3)−0.0022 (2)0.0037 (2)0.0015 (2)
C10.0132 (3)0.0127 (3)0.0166 (3)0.0010 (2)0.0045 (2)0.0005 (2)
C20.0133 (3)0.0144 (3)0.0158 (3)0.0007 (2)0.0045 (2)0.0008 (2)
C30.0139 (3)0.0132 (3)0.0141 (3)−0.0011 (2)0.0036 (2)0.0009 (2)
C40.0145 (3)0.0128 (3)0.0140 (3)−0.0004 (2)0.0025 (2)−0.0003 (2)
C50.0122 (3)0.0128 (3)0.0138 (3)0.0008 (2)0.0036 (2)−0.0014 (2)
C60.0119 (3)0.0127 (3)0.0127 (3)−0.00011 (19)0.00235 (19)0.0000 (2)
C70.0131 (3)0.0125 (3)0.0160 (3)0.0006 (2)0.0043 (2)0.0009 (2)
C80.0133 (3)0.0130 (3)0.0184 (3)0.0002 (2)0.0054 (2)−0.0004 (2)
C90.0125 (3)0.0149 (3)0.0210 (3)−0.0004 (2)0.0037 (2)0.0026 (2)
C100.0200 (3)0.0173 (3)0.0284 (4)0.0029 (2)0.0121 (3)0.0069 (3)
C110.0199 (3)0.0137 (3)0.0218 (3)0.0009 (2)0.0071 (2)0.0032 (2)
C120.0170 (3)0.0142 (3)0.0233 (3)0.0029 (2)0.0040 (2)0.0029 (2)
C130.0191 (3)0.0128 (3)0.0256 (3)0.0016 (2)0.0115 (3)0.0003 (2)

Geometric parameters (Å, °)

O1—N31.2265 (8)C7—C131.5044 (10)
O2—N31.2471 (8)C7—C81.5080 (10)
O3—N41.2380 (9)C8—C91.5330 (10)
O4—N41.2296 (8)C8—H8A0.9900
N1—C61.3551 (9)C8—H8B0.9900
N1—N21.3871 (8)C9—C101.5328 (10)
N1—H1N10.887 (14)C9—H9A0.9900
N2—C71.2934 (9)C9—H9B0.9900
N3—C51.4517 (9)C10—C111.5269 (11)
N4—C31.4525 (9)C10—H10A0.9900
C1—C21.3717 (10)C10—H10B0.9900
C1—C61.4241 (10)C11—C121.5249 (11)
C1—H1A0.9500C11—H11A0.9900
C2—C31.4026 (10)C11—H11B0.9900
C2—H2A0.9500C12—C131.5373 (11)
C3—C41.3772 (10)C12—H12A0.9900
C4—C51.3938 (10)C12—H12B0.9900
C4—H4A0.9500C13—H13A0.9900
C5—C61.4237 (9)C13—H13B0.9900
C6—N1—N2118.31 (6)C7—C8—H8B108.2
C6—N1—H1N1117.1 (9)C9—C8—H8B108.2
N2—N1—H1N1124.6 (9)H8A—C8—H8B107.4
C7—N2—N1117.04 (6)C10—C9—C8115.71 (6)
O1—N3—O2122.64 (6)C10—C9—H9A108.4
O1—N3—C5118.93 (6)C8—C9—H9A108.4
O2—N3—C5118.43 (6)C10—C9—H9B108.4
O4—N4—O3123.61 (7)C8—C9—H9B108.4
O4—N4—C3118.53 (6)H9A—C9—H9B107.4
O3—N4—C3117.86 (6)C11—C10—C9115.46 (6)
C2—C1—C6121.51 (6)C11—C10—H10A108.4
C2—C1—H1A119.2C9—C10—H10A108.4
C6—C1—H1A119.2C11—C10—H10B108.4
C1—C2—C3119.69 (6)C9—C10—H10B108.4
C1—C2—H2A120.2H10A—C10—H10B107.5
C3—C2—H2A120.2C12—C11—C10114.80 (6)
C4—C3—C2121.37 (6)C12—C11—H11A108.6
C4—C3—N4118.83 (6)C10—C11—H11A108.6
C2—C3—N4119.79 (6)C12—C11—H11B108.6
C3—C4—C5118.95 (6)C10—C11—H11B108.6
C3—C4—H4A120.5H11A—C11—H11B107.5
C5—C4—H4A120.5C11—C12—C13113.89 (6)
C4—C5—C6121.79 (6)C11—C12—H12A108.8
C4—C5—N3115.84 (6)C13—C12—H12A108.8
C6—C5—N3122.37 (6)C11—C12—H12B108.8
N1—C6—C5123.46 (6)C13—C12—H12B108.8
N1—C6—C1119.84 (6)H12A—C12—H12B107.7
C5—C6—C1116.69 (6)C7—C13—C12115.46 (6)
N2—C7—C13114.26 (6)C7—C13—H13A108.4
N2—C7—C8124.44 (6)C12—C13—H13A108.4
C13—C7—C8121.29 (6)C7—C13—H13B108.4
C7—C8—C9116.32 (6)C12—C13—H13B108.4
C7—C8—H8A108.2H13A—C13—H13B107.5
C9—C8—H8A108.2
C6—N1—N2—C7170.12 (6)C4—C5—C6—N1178.35 (6)
C6—C1—C2—C30.28 (10)N3—C5—C6—N1−0.87 (10)
C1—C2—C3—C4−0.32 (10)C4—C5—C6—C1−0.89 (9)
C1—C2—C3—N4179.83 (6)N3—C5—C6—C1179.89 (6)
O4—N4—C3—C4−3.17 (10)C2—C1—C6—N1−178.97 (6)
O3—N4—C3—C4176.68 (6)C2—C1—C6—C50.30 (10)
O4—N4—C3—C2176.69 (7)N1—N2—C7—C13−178.94 (6)
O3—N4—C3—C2−3.46 (10)N1—N2—C7—C8−0.34 (10)
C2—C3—C4—C5−0.26 (10)N2—C7—C8—C9−159.23 (7)
N4—C3—C4—C5179.60 (6)C13—C7—C8—C919.27 (10)
C3—C4—C5—C60.88 (10)C7—C8—C9—C10−74.34 (8)
C3—C4—C5—N3−179.85 (6)C8—C9—C10—C1176.57 (9)
O1—N3—C5—C40.89 (9)C9—C10—C11—C12−59.37 (9)
O2—N3—C5—C4−179.00 (6)C10—C11—C12—C1368.70 (9)
O1—N3—C5—C6−179.84 (6)N2—C7—C13—C12−131.11 (7)
O2—N3—C5—C60.26 (10)C8—C7—C13—C1250.25 (9)
N2—N1—C6—C5−177.98 (6)C11—C12—C13—C7−84.10 (8)
N2—N1—C6—C11.24 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O20.888 (14)1.947 (14)2.6225 (9)131.7 (12)
C2—H2A···O3i0.952.523.3165 (10)142

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2114).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Guillaumont, D. & Nakamura, S. (2000). Dyes Pigm.46, 85–92.
  • Niknam, K., Kiasat, A. R. & Karimi, S. (2005). Synth. Commun.35, 2231–2236.
  • Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  • Raj, B. N. B. & Kurup, M. R. P. (2006). Spectrochim. Acta Part A, 66, 898–903. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography