PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o330.
Published online 2009 January 17. doi:  10.1107/S1600536809001470
PMCID: PMC2968401

1-(5-Hydr­oxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)ethanone: a new monoclinic polymorph

Abstract

The title compound, C12H12N2O2, crystallized in the monolinic space group P21/n, with two independent mol­ecules (A and B) in the asymmetric unit. This is in contrast to the first monoclinic polymorph reported [Cingolani et al. (2002 [triangle]). Inorg. Chem. 41, 1151–116], which crystallized in the space group C2/c with one independent mol­ecule per asymmetric unit. The dihedral angles between the two rings differ slightly; in mol­ecule A it is 4.90 (11)° and in mol­ecule B it is 16.05 (13)°. In both mol­ecules, there is an intra­molecular O—H(...)O hydrogen bond involving the hydroxyl substituent and the carbonyl O atom of the adjacent acetyl group. In the crystal structure, mol­ecules A and B are linked via a C—H(...)N inter­action. There are also some weak C—H(...)π inter­actions involving the phenyl ring of mol­ecule A and H atoms of the acetyl groups of both mol­ecules.

Related literature

For early literature on pyrazoles, see: Knorr (1883 [triangle]). For information on the pharamceutical properties of pyrazoles, see: Grimmett (1970 [triangle]). For the monoclinic C2/c polymorph of the title compound, see: Cingolani et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o330-scheme1.jpg

Experimental

Crystal data

  • C12H12N2O2
  • M r = 216.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o330-efi1.jpg
  • a = 13.8735 (7) Å
  • b = 9.2037 (4) Å
  • c = 18.3702 (8) Å
  • β = 110.100 (2)°
  • V = 2202.78 (18) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 (2) K
  • 0.34 × 0.22 × 0.16 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: none
  • 24519 measured reflections
  • 5500 independent reflections
  • 2656 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.149
  • S = 0.97
  • 5500 reflections
  • 292 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001470/wn2305sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001470/wn2305Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

TUS acknowledges the Government College of Education, Afzalpur, Azad Jammu & Kashmir, for granting permission for further studies and providing laboratory facilities.

supplementary crystallographic information

Comment

The history of pyrazoles began already in the late nineteenth century (Knorr, 1883). Pyrazole is isomeric with the biologically important imidazole ring system but, unlike imidazole, has fewer natural derivatives. The ring system is very stable and inert, and interest in such compounds stemmed from their applications as drugs, dyes and as anesthetics. They are also used as antioxidants in fuels but their major applications have been in the pharmaceutical (Grimmett, 1970) and agricultural industries. In view of the importance of pyrazole derivatives we have planned a systematic study of such compounds, and describe here the crystal structure of a new polymorph of the title compound.

It crystallized in the monoclinic space group P21/n, with two independent molecules (A and B) per asymmetric unit (Fig. 1). This is in contrast to an earlier reported monoclinic polymorph, (Cingolani et al., 2002), which crystallized in the space group C2/c with one independent molecule per asymmetric unit. The bond distances and angles in both polymorphs are very similar. The dihedral angles between the two rings differ slightly; in molecule A it is 4.90 (11)° and in molecule B it is 16.05 (13)°. The corresponding value in the other polymorph is 5.33 (10)°.

In both molecules (A and B), there is an intramolecular O—H···O hydrogen bond involving the hydroxyl substituent and the carbonyl O atom of the adjacent acetyl group (Table 1); this feature is also present in the C2/c polymorph. In the crystal structure, molecules A and B are linked via a C—H···N interaction (Fig. 2 and Table 1). There are also some weak C—H···π interactions involving the phenyl ring (centroid Cg2) of molecule A and some H atoms of the acetyl groups of both molecules (Table 1).

Experimental

1-Phenyl-3-methyl-5-pyrazolone (7.5 g) was dissolved by heating in tetrahydrofuran (80 ml). Calcium hydroxide (12 g) was added and acetyl chloride (4 ml) was then added dropwise over a period of 1 min. The temperature increased during the first few minutes and the reaction mixture became a thick paste. This mixture was then refluxed for 30 min. The calcium complex of the title compound that had formed in the flask was decomposed by pouring the mixture into a dilute solution of HCl (100 ml). A dark brownish-red organic layer was obtained which was extracted using dichloromethane. The solvent was then removed by vacuum distillation and the solid obtained was washed with a little water and THF. Crystals of the title compound, suitable for X-ray analysis, were obtained by recrystallization from methanol/water (1:1, v:v).

Refinement

The H atoms were included in calculated positions and treated as riding atoms: O—H = 0.83 Å, C—H = 0.93 - 0.96 Å with Uiso(H) = kUeq(parent atom), where k = 1.2 for aromatic H and 1.5 for all other H atoms. Methyl group C34 undergoes considerable thermal motion but splitting the atom did not improve the situation.

Figures

Fig. 1.
A view of the molecular structure of the two independent molecules (A and B), showing the displacement ellipsoids drawn at the 50% probability level and the intramolecular O—H···O hydrogen bonds as dashed lines. Hydrogen ...
Fig. 2.
A view along the b axis of the crystal packing, showing the intramolecular O—H···H hydrogen bonds and the intermolecular C—H···N interactions as dashed lines. H atoms not involved in hydrogen ...

Crystal data

C12H12N2O2F(000) = 912
Mr = 216.24Dx = 1.304 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4106 reflections
a = 13.8735 (7) Åθ = 2.3–22.4°
b = 9.2037 (4) ŵ = 0.09 mm1
c = 18.3702 (8) ÅT = 296 K
β = 110.100 (2)°Block, colorless
V = 2202.78 (18) Å30.34 × 0.22 × 0.16 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer2656 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
graphiteθmax = 28.6°, θmin = 2.4°
[var phi] and ω scansh = −18→18
24519 measured reflectionsk = −12→12
5500 independent reflectionsl = −24→24

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.149w = 1/[σ2(Fo2) + (0.0571P)2 + 0.4951P] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
5500 reflectionsΔρmax = 0.18 e Å3
292 parametersΔρmin = −0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0059 (9)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.66613 (12)0.62373 (18)−0.03281 (8)0.0712 (6)
O20.53649 (13)0.8021 (2)−0.11913 (9)0.0837 (7)
N10.62925 (12)0.57325 (17)0.08026 (8)0.0485 (5)
N20.55538 (12)0.61513 (18)0.11211 (9)0.0540 (6)
C30.49372 (15)0.7059 (2)0.06310 (11)0.0526 (6)
C40.52380 (15)0.7271 (2)−0.00295 (10)0.0512 (7)
C50.61166 (15)0.6395 (2)0.01114 (10)0.0514 (7)
C60.70789 (14)0.4754 (2)0.12184 (10)0.0480 (6)
C70.77805 (16)0.4233 (3)0.09027 (12)0.0651 (8)
C80.85362 (18)0.3279 (3)0.13225 (13)0.0744 (9)
C90.85957 (17)0.2840 (3)0.20516 (12)0.0668 (8)
C100.78986 (16)0.3365 (2)0.23610 (11)0.0617 (7)
C110.71414 (15)0.4321 (2)0.19540 (10)0.0547 (7)
C120.48768 (17)0.8096 (2)−0.07168 (12)0.0612 (7)
C130.39531 (18)0.9041 (3)−0.09255 (13)0.0753 (9)
C140.40749 (17)0.7731 (3)0.08202 (13)0.0771 (9)
O210.23044 (14)0.0334 (2)0.01074 (9)0.0987 (8)
O220.18315 (17)0.1293 (3)−0.12625 (11)0.1230 (10)
N210.11930 (13)0.1209 (2)0.07053 (9)0.0632 (7)
N220.03141 (16)0.2078 (3)0.04976 (11)0.0871 (9)
C230.01369 (18)0.2479 (3)−0.02204 (13)0.0760 (9)
C240.08731 (16)0.1905 (2)−0.05120 (11)0.0617 (8)
C250.15261 (17)0.1086 (2)0.01064 (12)0.0622 (8)
C260.15670 (17)0.0590 (2)0.14600 (11)0.0591 (7)
C270.2554 (2)0.0047 (3)0.17540 (14)0.0830 (10)
C280.2890 (2)−0.0560 (3)0.24905 (15)0.0940 (11)
C290.2273 (2)−0.0600 (3)0.29305 (14)0.0882 (10)
C300.1312 (2)−0.0014 (3)0.26406 (14)0.0818 (10)
C310.09504 (19)0.0573 (3)0.19051 (12)0.0706 (8)
C320.1070 (2)0.2010 (3)−0.12067 (13)0.0786 (10)
C330.0467 (2)0.2899 (3)−0.18792 (13)0.0988 (11)
C34−0.0776 (2)0.3424 (4)−0.06259 (17)0.1267 (14)
H1O0.642800.67500−0.071400.1070*
H70.774500.452300.040900.0780*
H80.900900.292900.110900.0890*
H90.910400.219500.233100.0800*
H100.793600.307100.285500.0740*
H110.667500.467300.217300.0660*
H13A0.387200.95360−0.140300.1130*
H13B0.403300.97420−0.052200.1130*
H13C0.335700.84560−0.098600.1130*
H14A0.343900.752800.041200.1160*
H14B0.417500.876300.087200.1160*
H14C0.405600.733600.129900.1160*
H21O0.238800.04250−0.031100.1480*
H270.298600.008800.146400.1000*
H280.35480−0.094700.268800.1130*
H290.25040−0.102000.342100.1060*
H300.08950−0.001200.294300.0980*
H310.029100.095600.171200.0850*
H33A0.066300.26630−0.231800.1480*
H33B0.059600.39110−0.175600.1480*
H33C−0.025100.27020−0.200000.1480*
H34A−0.114100.36330−0.027900.1910*
H34B−0.122200.29250−0.107400.1910*
H34C−0.054600.43150−0.078300.1910*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0762 (10)0.0911 (12)0.0547 (8)0.0196 (9)0.0331 (8)0.0127 (8)
O20.0920 (12)0.1028 (14)0.0569 (9)0.0153 (10)0.0262 (9)0.0176 (8)
N10.0489 (9)0.0560 (10)0.0417 (8)0.0082 (8)0.0170 (7)−0.0040 (7)
N20.0520 (10)0.0624 (11)0.0501 (9)0.0100 (9)0.0207 (8)−0.0060 (8)
C30.0503 (11)0.0557 (12)0.0498 (10)0.0059 (10)0.0145 (9)−0.0072 (10)
C40.0511 (12)0.0513 (12)0.0461 (10)0.0036 (10)0.0101 (9)−0.0066 (9)
C50.0543 (12)0.0567 (12)0.0429 (10)−0.0004 (10)0.0165 (9)−0.0060 (9)
C60.0478 (11)0.0500 (11)0.0460 (10)0.0046 (9)0.0157 (9)−0.0041 (9)
C70.0678 (14)0.0804 (16)0.0544 (11)0.0209 (13)0.0305 (11)0.0094 (11)
C80.0685 (15)0.0919 (18)0.0725 (14)0.0327 (14)0.0366 (12)0.0133 (13)
C90.0623 (14)0.0737 (15)0.0630 (13)0.0189 (12)0.0199 (11)0.0076 (11)
C100.0686 (14)0.0690 (14)0.0478 (10)0.0116 (12)0.0203 (10)0.0043 (10)
C110.0574 (12)0.0613 (13)0.0498 (10)0.0076 (11)0.0239 (9)−0.0034 (9)
C120.0645 (14)0.0599 (13)0.0499 (11)−0.0007 (11)0.0078 (11)−0.0041 (10)
C130.0745 (16)0.0677 (15)0.0679 (14)0.0120 (13)0.0041 (12)0.0042 (11)
C140.0697 (15)0.0915 (18)0.0737 (14)0.0268 (14)0.0293 (12)−0.0001 (13)
O210.0956 (13)0.1380 (17)0.0771 (11)0.0562 (12)0.0485 (10)0.0161 (11)
O220.1323 (17)0.178 (2)0.0862 (12)0.0505 (16)0.0727 (13)0.0229 (13)
N210.0616 (11)0.0788 (13)0.0554 (10)0.0240 (10)0.0282 (9)0.0052 (9)
N220.0824 (14)0.1190 (18)0.0700 (12)0.0519 (13)0.0393 (11)0.0221 (12)
C230.0722 (15)0.0956 (18)0.0634 (13)0.0270 (14)0.0275 (12)0.0125 (13)
C240.0601 (13)0.0746 (15)0.0528 (11)0.0049 (12)0.0226 (10)0.0014 (10)
C250.0618 (13)0.0703 (15)0.0607 (12)0.0113 (12)0.0292 (11)−0.0019 (11)
C260.0674 (14)0.0600 (13)0.0524 (11)0.0121 (11)0.0239 (11)−0.0007 (10)
C270.0782 (17)0.102 (2)0.0700 (15)0.0283 (15)0.0272 (13)0.0093 (14)
C280.0888 (19)0.103 (2)0.0754 (17)0.0238 (17)0.0092 (16)0.0120 (15)
C290.112 (2)0.0838 (19)0.0616 (14)−0.0010 (17)0.0206 (16)0.0095 (13)
C300.107 (2)0.0783 (17)0.0679 (15)−0.0045 (16)0.0400 (15)0.0041 (13)
C310.0774 (16)0.0741 (15)0.0651 (13)0.0103 (13)0.0306 (12)0.0031 (12)
C320.0825 (17)0.0944 (19)0.0616 (14)−0.0036 (15)0.0283 (13)−0.0008 (13)
C330.111 (2)0.118 (2)0.0601 (14)−0.0131 (19)0.0201 (14)0.0143 (15)
C340.114 (2)0.177 (3)0.093 (2)0.084 (2)0.0405 (18)0.042 (2)

Geometric parameters (Å, °)

O1—C51.290 (3)C11—H110.9300
O2—C121.276 (3)C13—H13B0.9600
O1—H1O0.8200C13—H13A0.9600
O21—C251.282 (3)C13—H13C0.9600
O22—C321.279 (4)C14—H14C0.9600
O21—H21O0.8200C14—H14B0.9600
N1—C51.353 (2)C14—H14A0.9600
N1—C61.419 (2)C23—C241.409 (3)
N1—N21.398 (2)C23—C341.506 (4)
N2—C31.308 (3)C24—C251.404 (3)
N21—C251.337 (3)C24—C321.397 (3)
N21—C261.422 (2)C26—C311.372 (3)
N21—N221.397 (3)C26—C271.381 (4)
N22—C231.309 (3)C27—C281.388 (4)
C3—C141.490 (3)C28—C291.365 (4)
C3—C41.426 (3)C29—C301.365 (4)
C4—C121.410 (3)C30—C311.380 (3)
C4—C51.409 (3)C32—C331.478 (3)
C6—C111.383 (2)C27—H270.9300
C6—C71.379 (3)C28—H280.9300
C7—C81.382 (4)C29—H290.9300
C8—C91.374 (3)C30—H300.9300
C9—C101.367 (3)C31—H310.9300
C10—C111.377 (3)C33—H33A0.9600
C12—C131.486 (3)C33—H33B0.9600
C7—H70.9300C33—H33C0.9600
C8—H80.9300C34—H34A0.9600
C9—H90.9300C34—H34B0.9600
C10—H100.9300C34—H34C0.9600
C5—O1—H1O110.00H14A—C14—H14B109.00
C25—O21—H21O110.00H14A—C14—H14C110.00
N2—N1—C5110.30 (16)C3—C14—H14B109.00
C5—N1—C6130.45 (17)C3—C14—H14C109.00
N2—N1—C6119.25 (14)C3—C14—H14A109.00
N1—N2—C3106.75 (15)N22—C23—C24111.6 (2)
C25—N21—C26130.94 (19)N22—C23—C34119.8 (2)
N22—N21—C26119.17 (17)C24—C23—C34128.7 (2)
N22—N21—C25109.87 (17)C23—C24—C25104.13 (19)
N21—N22—C23106.3 (2)C23—C24—C32135.7 (2)
C4—C3—C14129.42 (18)C25—C24—C32120.1 (2)
N2—C3—C14119.48 (18)O21—C25—C24126.9 (2)
N2—C3—C4111.08 (18)N21—C25—C24108.1 (2)
C3—C4—C5104.66 (16)O21—C25—N21125.02 (19)
C3—C4—C12135.9 (2)N21—C26—C27120.5 (2)
C5—C4—C12119.44 (19)C27—C26—C31120.0 (2)
N1—C5—C4107.21 (17)N21—C26—C31119.5 (2)
O1—C5—C4127.25 (17)C26—C27—C28118.9 (2)
O1—C5—N1125.54 (18)C27—C28—C29121.3 (3)
N1—C6—C11119.18 (17)C28—C29—C30119.0 (2)
C7—C6—C11119.64 (19)C29—C30—C31121.0 (3)
N1—C6—C7121.18 (17)C26—C31—C30119.8 (2)
C6—C7—C8119.7 (2)O22—C32—C33117.7 (2)
C7—C8—C9120.7 (2)C24—C32—C33124.7 (2)
C8—C9—C10119.2 (2)O22—C32—C24117.6 (2)
C9—C10—C11121.10 (19)C26—C27—H27121.00
C6—C11—C10119.65 (19)C28—C27—H27121.00
O2—C12—C13117.93 (19)C27—C28—H28119.00
O2—C12—C4118.3 (2)C29—C28—H28119.00
C4—C12—C13123.8 (2)C28—C29—H29120.00
C8—C7—H7120.00C30—C29—H29120.00
C6—C7—H7120.00C29—C30—H30120.00
C9—C8—H8120.00C31—C30—H30120.00
C7—C8—H8120.00C26—C31—H31120.00
C10—C9—H9120.00C30—C31—H31120.00
C8—C9—H9120.00C32—C33—H33A110.00
C9—C10—H10119.00C32—C33—H33B109.00
C11—C10—H10119.00C32—C33—H33C109.00
C10—C11—H11120.00H33A—C33—H33B109.00
C6—C11—H11120.00H33A—C33—H33C110.00
C12—C13—H13B109.00H33B—C33—H33C109.00
C12—C13—H13C109.00C23—C34—H34A109.00
H13A—C13—H13C110.00C23—C34—H34B109.00
C12—C13—H13A109.00C23—C34—H34C109.00
H13A—C13—H13B109.00H34A—C34—H34B109.00
H13B—C13—H13C109.00H34A—C34—H34C110.00
H14B—C14—H14C109.00H34B—C34—H34C110.00
C5—N1—N2—C3−0.1 (2)C3—C4—C5—N10.3 (2)
C6—N1—N2—C3179.20 (16)C12—C4—C5—O1−0.2 (3)
N2—N1—C5—O1179.96 (19)C12—C4—C5—N1179.92 (16)
N2—N1—C5—C4−0.1 (2)C3—C4—C12—O2179.4 (2)
C6—N1—C5—O10.8 (3)N1—C6—C7—C8−179.9 (2)
C6—N1—C5—C4−179.31 (18)C11—C6—C7—C80.3 (3)
N2—N1—C6—C7175.42 (19)N1—C6—C11—C10179.64 (18)
N2—N1—C6—C11−4.7 (3)C7—C6—C11—C10−0.5 (3)
C5—N1—C6—C7−5.4 (3)C6—C7—C8—C90.1 (4)
C5—N1—C6—C11174.41 (19)C7—C8—C9—C10−0.3 (4)
N1—N2—C3—C40.3 (2)C8—C9—C10—C110.1 (4)
N1—N2—C3—C14−178.50 (18)C9—C10—C11—C60.4 (3)
N22—N21—C25—O21−178.4 (2)N22—C23—C24—C250.5 (3)
N22—N21—C25—C241.0 (2)N22—C23—C24—C32−177.7 (3)
C26—N21—C25—O21−0.3 (4)C34—C23—C24—C25−178.6 (3)
C26—N21—C25—C24179.2 (2)C34—C23—C24—C323.1 (5)
N22—N21—C26—C27−163.5 (2)C23—C24—C25—O21178.5 (2)
C25—N21—N22—C23−0.7 (3)C23—C24—C25—N21−1.0 (2)
C26—N21—N22—C23−179.1 (2)C32—C24—C25—O21−2.9 (3)
C25—N21—C26—C31−163.4 (2)C32—C24—C25—N21177.6 (2)
N22—N21—C26—C3114.6 (3)C23—C24—C32—O22−179.3 (3)
C25—N21—C26—C2718.5 (3)C23—C24—C32—C331.3 (5)
N21—N22—C23—C240.1 (3)C25—C24—C32—O222.7 (4)
N21—N22—C23—C34179.3 (2)C25—C24—C32—C33−176.8 (2)
C14—C3—C4—C5178.3 (2)N21—C26—C27—C28−179.5 (2)
C14—C3—C4—C12−1.3 (4)C31—C26—C27—C282.4 (4)
N2—C3—C4—C12−179.9 (2)N21—C26—C31—C30−179.4 (2)
N2—C3—C4—C5−0.3 (2)C27—C26—C31—C30−1.3 (4)
C3—C4—C5—O1−179.81 (19)C26—C27—C28—C29−1.4 (4)
C3—C4—C12—C13−1.2 (4)C27—C28—C29—C30−0.8 (4)
C5—C4—C12—O2−0.1 (3)C28—C29—C30—C312.0 (4)
C5—C4—C12—C13179.3 (2)C29—C30—C31—C26−0.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O···O20.821.852.546 (2)142
O21—H21O···O220.821.832.531 (3)142
C8—H8···N22i0.932.563.489 (3)177
C13—H13C···Cg2ii0.962.663.533 (3)150
C33—H33B···Cg2ii0.962.983.774 (3)141

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2305).

References

  • Bruker (2002). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cingolani, A., Effendy, Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (2002). Inorg. Chem.41, 1151–1161. [PubMed]
  • Grimmett, M. R. (1970). Adv. Heterocycl. Chem.12, 103–183.
  • Knorr, L. (1883). Ber. Dtsch. Chem. Ges.16, 2593–2596.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography