PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o279.
Published online 2009 January 10. doi:  10.1107/S1600536809000737
PMCID: PMC2968395

9-Ethyl-3-(2-methyl­benzo­yl)-9H-carbazole

Abstract

In the title compound, C22H19NO, the dihedral angle between the benzene ring and the carbazole ring system 77.1 (1)°.. The crystal structure is stabilized by inter­molecular aromatic π–π inter­actions between the benzene ring and the pyrrole ring of the carbazole system of neighbouring mol­ecules [centroid–centroid distance = 3.617 (4) Å]. In addition, the crystal structure exhibits a weak inter­molecular C—H(...)π inter­action.

Related literature

For the synthesis, see Feng et al. (2007 [triangle]); For bond-length data, see: Allen et al. (1987 [triangle]). For background, see: Bai et al. (2007 [triangle]); Promarak et al. (2007 [triangle]); Liu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o279-scheme1.jpg

Experimental

Crystal data

  • C22H19NO
  • M r = 313.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o279-efi7.jpg
  • a = 11.676 (2) Å
  • b = 10.569 (2) Å
  • c = 13.756 (3) Å
  • β = 96.48 (3)°
  • V = 1686.7 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.978, T max = 0.993
  • 3053 measured reflections
  • 3053 independent reflections
  • 2046 reflections with I > 2σ(I)
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.173
  • S = 1.08
  • 3053 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809000737/lx2084sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000737/lx2084Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The title compound is one of important intermediates in synthesis of carbazole-containing compounds used as organic optoelectronic materials which have the characteristic of large π—π conjugation bones (Bai et al. 2007; Promarak et al. 2007; Liu et al. 2009). Here we report the crystal structure of the title compound, 9-ethyl-3-(2-methylbenzoyl)carbazole (Fig. 1).

In the title compound, the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings of A (C3–8), B (C3/C8/C9/C14/N), C (C9–14) and D (C16–21) are approximately plane, and dihedral angles of the four rings are: A/B = 1.1 (1)°, B/C = 2.6 (1)°, C/D = 76.0 (2)°. The crystals structure is stabilized by intermolecular aromatic π—π interactions between the benzene ring and the pyrrole ring of the carbazole system of neighbouring molecules. The Cg1···Cg2iii distance is 3.617 (4) Å (Fig. 2; Cg1 and Cg2 are the centroids of the C3–C8 benzene ring and the C3/C8/C9/C14/N pyrrole ring, respectively, symmetry code as in Fig. 2). The molecular packing is further stabilized by intermolecular C—H···π interactions ; one between the hydrogen on the benzene ring and the benzene ring of neighbouring molecules (C12—H12A···Cg1i), a second the hydrogen on the benzene ring and the pyrrole ring of neighbouring molecules (C13—H13A···Cg2i), a third between the hydrogen of C–22 methyl group and the benzene ring of neighbouring molecules (C22—H22B···Cg3ii) (Fig. 2 and Table 1; Cg3 is the centroids of the C16–C21 benzene ring, symmetry code as in Fig. 2).

Experimental

The title compound, (I) was prepared by a silimar method reported in literature (Feng et al., 2007) with some modification. The crystals were obtained by dissolving I (0.15 g) in a mixture solvent of methanol (30 ml) and dichloromethane (20 ml) and evaporating the solvent slowly at room temperature for about 2 d.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
π—π and C—H···π interactions (dotted lines) in the title compound. Cg denotes ring centroid. [Symmetry code: (i) -x+1, y-1/2, -z+1/2; (ii) -x, -y+1, -z (iii) -x+1, -y+1, -z+1; (iv) -x+1, ...

Crystal data

C22H19NOF(000) = 664
Mr = 313.38Dx = 1.234 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.676 (2) Åθ = 9–13°
b = 10.569 (2) ŵ = 0.08 mm1
c = 13.756 (3) ÅT = 298 K
β = 96.48 (3)°Plate, colorless
V = 1686.7 (6) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer2046 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
graphiteθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = −14→13
Absorption correction: ψ scan (North et al., 1968)k = 0→12
Tmin = 0.978, Tmax = 0.993l = 0→16
3053 measured reflections3 standard reflections every 200 reflections
3053 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: difference Fourier map
wR(F2) = 0.173H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0514P)2 + 1.9857P] where P = (Fo2 + 2Fc2)/3
3053 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O0.04033 (19)0.4866 (2)0.24020 (17)0.0606 (7)
N0.5747 (2)0.5162 (3)0.36517 (18)0.0451 (6)
C10.7412 (3)0.4981 (4)0.2716 (3)0.0768 (12)
H1A0.81130.45150.26860.115*
H1B0.75880.58640.28080.115*
H1C0.69170.48680.21160.115*
C20.6818 (3)0.4509 (4)0.3554 (2)0.0554 (9)
H2A0.66610.36130.34650.066*
H2B0.73300.46100.41550.066*
C30.5588 (3)0.6168 (3)0.4282 (2)0.0456 (8)
C40.6411 (3)0.6748 (4)0.4954 (2)0.0576 (9)
H4A0.71770.64920.50330.069*
C50.6016 (4)0.7725 (4)0.5493 (3)0.0660 (11)
H5A0.65320.81180.59630.079*
C60.4896 (4)0.8141 (3)0.5365 (3)0.0640 (10)
H6A0.46810.88270.57270.077*
C70.4076 (3)0.7551 (3)0.4703 (2)0.0549 (9)
H7A0.33110.78170.46300.066*
C80.4436 (3)0.6549 (3)0.4150 (2)0.0402 (7)
C90.3850 (2)0.5716 (3)0.3427 (2)0.0393 (7)
C100.2712 (3)0.5577 (3)0.3037 (2)0.0414 (7)
H10A0.21490.61170.32280.050*
C110.2415 (2)0.4626 (3)0.2359 (2)0.0414 (7)
C120.3274 (3)0.3846 (3)0.2051 (2)0.0458 (8)
H12A0.30700.32360.15750.055*
C130.4413 (3)0.3958 (3)0.2433 (2)0.0451 (7)
H13A0.49760.34230.22350.054*
C140.4691 (2)0.4903 (3)0.3127 (2)0.0395 (7)
C150.1190 (3)0.4411 (3)0.1988 (2)0.0433 (7)
C160.0876 (2)0.3582 (3)0.1113 (2)0.0380 (7)
C170.0254 (3)0.2480 (3)0.1238 (2)0.0511 (8)
H17A0.00640.22740.18570.061*
C18−0.0088 (3)0.1689 (3)0.0462 (3)0.0604 (9)
H18A−0.04890.09480.05600.072*
C190.0167 (3)0.2000 (3)−0.0451 (3)0.0588 (9)
H19A−0.00600.1474−0.09790.071*
C200.0767 (3)0.3106 (3)−0.0587 (2)0.0524 (8)
H20A0.09140.3322−0.12160.063*
C210.1159 (2)0.3909 (3)0.0190 (2)0.0421 (7)
C220.1797 (3)0.5092 (3)0.0004 (2)0.0508 (8)
H22A0.20300.55100.06130.076*
H22B0.13050.5642−0.04120.076*
H22C0.24660.4884−0.03100.076*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O0.0475 (13)0.0765 (18)0.0590 (14)0.0061 (12)0.0109 (11)−0.0164 (13)
N0.0360 (13)0.0548 (17)0.0444 (14)0.0025 (12)0.0042 (11)0.0022 (13)
C10.055 (2)0.101 (3)0.079 (3)0.000 (2)0.022 (2)0.010 (2)
C20.0350 (17)0.073 (2)0.057 (2)0.0078 (16)−0.0005 (14)0.0077 (18)
C30.0535 (19)0.0459 (18)0.0378 (16)−0.0090 (15)0.0062 (14)0.0069 (14)
C40.061 (2)0.066 (2)0.0453 (18)−0.0179 (19)0.0015 (16)0.0135 (18)
C50.082 (3)0.065 (3)0.048 (2)−0.029 (2)−0.0035 (19)−0.0012 (19)
C60.086 (3)0.047 (2)0.058 (2)−0.012 (2)0.004 (2)−0.0085 (18)
C70.069 (2)0.0419 (19)0.055 (2)−0.0072 (17)0.0134 (17)−0.0039 (16)
C80.0474 (17)0.0347 (16)0.0390 (15)−0.0078 (13)0.0067 (13)0.0000 (13)
C90.0436 (16)0.0357 (16)0.0392 (15)−0.0034 (13)0.0080 (13)−0.0042 (13)
C100.0467 (17)0.0364 (16)0.0417 (16)0.0084 (14)0.0076 (13)−0.0028 (13)
C110.0424 (17)0.0423 (18)0.0400 (16)0.0050 (14)0.0070 (13)−0.0048 (14)
C120.0475 (18)0.0461 (18)0.0438 (17)0.0018 (15)0.0047 (14)−0.0114 (15)
C130.0447 (17)0.0450 (18)0.0459 (17)0.0078 (14)0.0061 (14)−0.0102 (15)
C140.0365 (15)0.0432 (17)0.0393 (15)0.0024 (13)0.0060 (12)0.0016 (13)
C150.0465 (17)0.0463 (18)0.0375 (15)0.0032 (15)0.0071 (14)−0.0018 (14)
C160.0338 (14)0.0382 (16)0.0411 (15)0.0042 (13)0.0006 (12)0.0021 (13)
C170.058 (2)0.0434 (19)0.0521 (18)−0.0050 (16)0.0080 (16)0.0064 (16)
C180.065 (2)0.046 (2)0.070 (2)−0.0097 (17)0.0068 (19)−0.0054 (18)
C190.063 (2)0.053 (2)0.058 (2)−0.0001 (18)−0.0026 (18)−0.0151 (18)
C200.0509 (19)0.061 (2)0.0444 (17)0.0020 (17)0.0023 (15)−0.0029 (16)
C210.0371 (16)0.0461 (18)0.0432 (16)0.0034 (13)0.0043 (13)0.0011 (14)
C220.0528 (19)0.0474 (19)0.0525 (19)−0.0042 (15)0.0066 (15)0.0100 (16)

Geometric parameters (Å, °)

O—C151.231 (3)C10—C111.388 (4)
N—C141.384 (4)C10—H10A0.9300
N—C31.397 (4)C11—C121.400 (4)
N—C21.448 (4)C11—C151.481 (4)
C1—C21.497 (5)C12—C131.380 (4)
C1—H1A0.9600C12—H12A0.9300
C1—H1B0.9600C13—C141.394 (4)
C1—H1C0.9600C13—H13A0.9300
C2—H2A0.9700C15—C161.501 (4)
C2—H2B0.9700C16—C171.392 (4)
C3—C41.397 (4)C16—C211.392 (4)
C3—C81.397 (4)C17—C181.379 (5)
C4—C51.380 (5)C17—H17A0.9300
C4—H4A0.9300C18—C191.363 (5)
C5—C61.373 (5)C18—H18A0.9300
C5—H5A0.9300C19—C201.385 (5)
C6—C71.393 (5)C19—H19A0.9300
C6—H6A0.9300C20—C211.401 (4)
C7—C81.396 (4)C20—H20A0.9300
C7—H7A0.9300C21—C221.492 (4)
C8—C91.441 (4)C22—H22A0.9600
C9—C101.385 (4)C22—H22B0.9600
C9—C141.401 (4)C22—H22C0.9600
C14—N—C3107.6 (2)C10—C11—C12119.8 (3)
C14—N—C2125.8 (3)C10—C11—C15120.0 (3)
C3—N—C2126.6 (3)C12—C11—C15120.2 (3)
C2—C1—H1A109.5C13—C12—C11121.8 (3)
C2—C1—H1B109.5C13—C12—H12A119.1
H1A—C1—H1B109.5C11—C12—H12A119.1
C2—C1—H1C109.5C12—C13—C14117.5 (3)
H1A—C1—H1C109.5C12—C13—H13A121.2
H1B—C1—H1C109.5C14—C13—H13A121.2
N—C2—C1113.1 (3)N—C14—C13128.6 (3)
N—C2—H2A109.0N—C14—C9109.7 (3)
C1—C2—H2A109.0C13—C14—C9121.7 (3)
N—C2—H2B109.0O—C15—C11121.5 (3)
C1—C2—H2B109.0O—C15—C16118.1 (3)
H2A—C2—H2B107.8C11—C15—C16120.3 (3)
N—C3—C4128.0 (3)C17—C16—C21120.0 (3)
N—C3—C8109.4 (3)C17—C16—C15118.3 (3)
C4—C3—C8122.6 (3)C21—C16—C15121.7 (3)
C5—C4—C3116.0 (3)C18—C17—C16121.4 (3)
C5—C4—H4A122.0C18—C17—H17A119.3
C3—C4—H4A122.0C16—C17—H17A119.3
C6—C5—C4122.8 (3)C19—C18—C17119.5 (3)
C6—C5—H5A118.6C19—C18—H18A120.2
C4—C5—H5A118.6C17—C18—H18A120.2
C5—C6—C7121.0 (4)C18—C19—C20119.6 (3)
C5—C6—H6A119.5C18—C19—H19A120.2
C7—C6—H6A119.5C20—C19—H19A120.2
C6—C7—C8118.0 (3)C19—C20—C21122.3 (3)
C6—C7—H7A121.0C19—C20—H20A118.8
C8—C7—H7A121.0C21—C20—H20A118.8
C7—C8—C3119.6 (3)C16—C21—C20117.0 (3)
C7—C8—C9133.7 (3)C16—C21—C22122.7 (3)
C3—C8—C9106.7 (3)C20—C21—C22120.2 (3)
C10—C9—C14119.6 (3)C21—C22—H22A109.5
C10—C9—C8133.8 (3)C21—C22—H22B109.5
C14—C9—C8106.6 (3)H22A—C22—H22B109.5
C9—C10—C11119.6 (3)C21—C22—H22C109.5
C9—C10—H10A120.2H22A—C22—H22C109.5
C11—C10—H10A120.2H22B—C22—H22C109.5
C14—N—C2—C182.1 (4)C2—N—C14—C132.5 (5)
C3—N—C2—C1−97.4 (4)C3—N—C14—C9−1.2 (3)
C14—N—C3—C4179.7 (3)C2—N—C14—C9179.2 (3)
C2—N—C3—C4−0.7 (5)C12—C13—C14—N176.2 (3)
C14—N—C3—C8−0.4 (3)C12—C13—C14—C9−0.2 (5)
C2—N—C3—C8179.2 (3)C10—C9—C14—N−176.4 (3)
N—C3—C4—C5−179.6 (3)C8—C9—C14—N2.2 (3)
C8—C3—C4—C50.5 (5)C10—C9—C14—C130.6 (4)
C3—C4—C5—C6−2.0 (5)C8—C9—C14—C13179.2 (3)
C4—C5—C6—C72.8 (6)C10—C11—C15—O−15.2 (5)
C5—C6—C7—C8−2.0 (5)C12—C11—C15—O162.8 (3)
C6—C7—C8—C30.5 (5)C10—C11—C15—C16167.3 (3)
C6—C7—C8—C9178.6 (3)C12—C11—C15—C16−14.7 (4)
N—C3—C8—C7−179.7 (3)O—C15—C16—C17−60.7 (4)
C4—C3—C8—C70.2 (5)C11—C15—C16—C17116.9 (3)
N—C3—C8—C91.8 (3)O—C15—C16—C21117.3 (3)
C4—C3—C8—C9−178.3 (3)C11—C15—C16—C21−65.2 (4)
C7—C8—C9—C10−2.4 (6)C21—C16—C17—C180.5 (5)
C3—C8—C9—C10175.9 (3)C15—C16—C17—C18178.5 (3)
C7—C8—C9—C14179.3 (3)C16—C17—C18—C19−1.3 (5)
C3—C8—C9—C14−2.4 (3)C17—C18—C19—C200.1 (5)
C14—C9—C10—C110.6 (4)C18—C19—C20—C212.1 (5)
C8—C9—C10—C11−177.5 (3)C17—C16—C21—C201.5 (4)
C9—C10—C11—C12−2.2 (4)C15—C16—C21—C20−176.4 (3)
C9—C10—C11—C15175.7 (3)C17—C16—C21—C22178.4 (3)
C10—C11—C12—C132.8 (5)C15—C16—C21—C220.5 (4)
C15—C11—C12—C13−175.2 (3)C19—C20—C21—C16−2.8 (5)
C11—C12—C13—C14−1.5 (5)C19—C20—C21—C22−179.8 (3)
C3—N—C14—C13−177.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg1i0.933.133.730 (4)124
C13—H13A···Cg2i0.933.183.928 (4)138
C22—H22B···Cg3ii0.962.713.501 (4)140

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2084).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bai, G., Li, J., Li, D., Dong, C., Han, X. & Lin, P. (2007). Dyes Pigments, 75, 93–98.
  • Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Feng, Y., Chen, Q. R., Li, W. S. & Xie, C. (2007). Chem. Res. Appl.19, 1162–1165.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Liu, S., Jiang, P., Song, G. L., Liu, R. & Zhu, H. J. (2009). Dyes Pigments, doi: 10.1016/j.dyepig.2008.10.010.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Promarak, V., Saengsuwan, S., Jungsuttiwong, S., Sudyoadsuk, T. & Keawin, T. (2007). Tetrahedron Lett., 48, 89–93.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography