PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m157.
Published online 2009 January 8. doi:  10.1107/S1600536808044103
PMCID: PMC2968385

Di-μ-chlorido-bis­{aqua­chlorido[3-ethyl-4-phenyl-5-(2-pyrid­yl)-4H-1,2,4-triazole-κ2 N 1,N 5]manganese(II)}

Abstract

In the centrosymmetric dinuclear title compound, [Mn2Cl4(C15H14N4)2(H2O)2], the MnII atom is coordinated by an N,N′-bidentate ligand, a water mol­ecule, a terminal chloride ion and two bridging chloride ions in a distorted MnN2OCl3 octa­hedral geometry. The Mn(...)Mn separation is 3.6563 (9) Å. In the crystal structure, O—H(...)N and O—H(...)Cl hydrogen bonds help to establish the packing.

Related literature

For background, see: Klingele et al. (2005 [triangle]), Kume et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m157-scheme1.jpg

Experimental

Crystal data

  • [Mn2Cl4(C15H14N4)2(H2O)2]
  • M r = 788.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m157-efi1.jpg
  • a = 9.9369 (15) Å
  • b = 8.9369 (13) Å
  • c = 19.642 (3) Å
  • β = 103.323 (2)°
  • V = 1697.3 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.10 mm−1
  • T = 293 (2) K
  • 0.32 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.72, T max = 0.77
  • 8811 measured reflections
  • 3329 independent reflections
  • 2364 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.105
  • S = 1.02
  • 3329 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808044103/hb2883sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044103/hb2883Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Jingye Pharmachemical Pilot Plant for financial assistance through project No. 8507041056.

supplementary crystallographic information

Comment

The 1,2,4-triazole ring can act as a bidentate ligand in coordination chemistry (e.g. Klingele et al., 2005; Kume et al. 2006). We report here the synthesis and crystal structure analysis of the title compound, (I).

The structure of (I) is shown in Fig.1. The title compound is a centrosymmetric dinuclear maganese(II) complex bridged by two chloride ions (Table 1). The dihedral angle between the triazole and pyridine rings is 9.42 (24)°, and that between the triazole and benzene rings is 80.53 (12)°. In the crystal, O—H···N and O—H···Cl hydrogen bonds (Table 2) help to establish the packing.

Experimental

To a warm solution of 0.501 g of 3-ethyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole (2.0 mmol) in 10 ml ethanol, 0.792 g of manganese(II) chloride tetrahydrate (4.0 mmol) in 10 ml water was added. The filtrate was left to stand at room temperature for several days, and pale yellow blocks of (I) were collected.

Refinement

The H atoms were gemoetrically placed (C—H = 0.93–0.97Å, O—H = 0.85Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I) with Displacement ellipsoids shown at the 30% probability level and H atoms omitted for clarity. Mn1A and the unlabelled atoms are generated by the symmetry operation (1–x, 2–y, 1–z).

Crystal data

[Mn2Cl4(C15H14N4)2(H2O)2]F(000) = 804
Mr = 788.32Dx = 1.542 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4766 reflections
a = 9.9369 (15) Åθ = 2.5–28.0°
b = 8.9369 (13) ŵ = 1.10 mm1
c = 19.642 (3) ÅT = 293 K
β = 103.323 (2)°Block, pale yellow
V = 1697.3 (4) Å30.32 × 0.26 × 0.24 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer3329 independent reflections
Radiation source: sealed tube2364 reflections with I > 2σ(I)
graphiteRint = 0.045
ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −12→8
Tmin = 0.72, Tmax = 0.77k = −11→10
8811 measured reflectionsl = −24→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.04P)2 + 0.95P] where P = (Fo2 + 2Fc2)/3
3329 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.52358 (6)0.80195 (6)0.52295 (3)0.03231 (16)
Cl10.32636 (10)0.98690 (10)0.50448 (4)0.0327 (2)
Cl20.46719 (10)0.68828 (10)0.40606 (4)0.0340 (2)
C10.5362 (4)0.9652 (4)0.67503 (19)0.0356 (9)
H10.47231.02950.64770.043*
C20.5739 (4)0.9897 (5)0.7457 (2)0.0416 (10)
H20.53931.07150.76540.050*
C30.6643 (4)0.8909 (5)0.78734 (19)0.0404 (10)
H30.68960.90380.83560.049*
C40.7167 (4)0.7719 (4)0.75560 (18)0.0365 (9)
H40.77570.70250.78250.044*
C50.6801 (3)0.7581 (4)0.68393 (18)0.0263 (7)
C60.7326 (4)0.6459 (4)0.64299 (19)0.0324 (8)
C70.8480 (4)0.4695 (4)0.60588 (18)0.0335 (8)
C80.9328 (5)0.3335 (5)0.60667 (19)0.0438 (10)
H8A1.01220.34150.64590.053*
H8B0.87860.24880.61590.053*
C90.9834 (4)0.2988 (5)0.5451 (2)0.0422 (10)
H9A0.90740.29770.50470.063*
H9B1.02720.20240.55060.063*
H9C1.04920.37340.53900.063*
C100.8737 (4)0.4760 (4)0.73627 (18)0.0368 (9)
C111.0054 (4)0.5134 (5)0.77226 (18)0.0390 (9)
H111.06200.57270.75170.047*
C121.0518 (4)0.4594 (5)0.84098 (19)0.0397 (10)
H121.13970.48350.86700.048*
C130.9654 (4)0.3702 (5)0.86918 (19)0.0420 (10)
H130.99600.33350.91440.050*
C140.8336 (5)0.3345 (5)0.83126 (19)0.0421 (10)
H140.77580.27640.85170.051*
C150.7878 (5)0.3844 (5)0.7637 (2)0.0443 (10)
H150.70120.35700.73720.053*
N10.5877 (3)0.8514 (3)0.64330 (14)0.0303 (7)
N20.7055 (3)0.6526 (3)0.57301 (15)0.0322 (7)
N30.7784 (3)0.5400 (3)0.55068 (15)0.0329 (7)
N40.8223 (3)0.5325 (3)0.66508 (14)0.0313 (7)
O10.3944 (3)0.6254 (3)0.56175 (12)0.0321 (6)
H1A0.44200.54610.57210.039*
H1C0.32280.60620.52990.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0361 (3)0.0276 (3)0.0307 (3)0.0000 (2)0.0025 (2)0.0027 (2)
Cl10.0357 (5)0.0278 (4)0.0319 (4)−0.0004 (4)0.0022 (4)0.0028 (3)
Cl20.0396 (5)0.0281 (5)0.0320 (4)0.0000 (4)0.0033 (4)0.0023 (3)
C10.044 (2)0.0233 (18)0.039 (2)0.0110 (16)0.0080 (17)−0.0013 (16)
C20.043 (2)0.040 (2)0.044 (2)0.0019 (18)0.0136 (19)−0.0123 (18)
C30.040 (2)0.054 (3)0.0277 (18)0.002 (2)0.0079 (17)−0.0088 (18)
C40.039 (2)0.039 (2)0.0292 (18)0.0055 (18)0.0043 (16)0.0020 (16)
C50.0177 (15)0.0252 (17)0.0346 (17)−0.0063 (13)0.0027 (14)0.0008 (14)
C60.037 (2)0.0271 (18)0.0341 (19)0.0037 (16)0.0110 (17)0.0057 (15)
C70.039 (2)0.0322 (19)0.0292 (18)0.0090 (17)0.0079 (16)−0.0013 (15)
C80.061 (3)0.041 (2)0.031 (2)0.021 (2)0.0134 (19)0.0053 (17)
C90.040 (2)0.045 (2)0.042 (2)0.0178 (19)0.0108 (18)0.0159 (19)
C100.045 (2)0.035 (2)0.0272 (17)0.0145 (18)0.0007 (17)0.0003 (16)
C110.047 (2)0.043 (2)0.0253 (17)0.0156 (19)0.0036 (18)−0.0038 (16)
C120.041 (2)0.045 (2)0.0313 (19)0.0245 (19)0.0045 (18)0.0087 (17)
C130.047 (3)0.047 (2)0.0293 (19)0.024 (2)0.0044 (18)0.0118 (17)
C140.049 (3)0.043 (2)0.0313 (19)0.0236 (19)0.0022 (18)0.0072 (16)
C150.042 (2)0.052 (3)0.038 (2)0.007 (2)0.0074 (19)0.0102 (19)
N10.0344 (17)0.0319 (16)0.0232 (14)0.0032 (13)0.0036 (13)0.0050 (12)
N20.0368 (18)0.0262 (16)0.0313 (16)0.0005 (13)0.0029 (14)0.0041 (12)
N30.0374 (18)0.0287 (16)0.0303 (15)0.0047 (14)0.0027 (13)0.0028 (12)
N40.0355 (17)0.0337 (16)0.0224 (14)0.0055 (14)0.0019 (13)0.0034 (12)
O10.0367 (14)0.0260 (13)0.0330 (13)−0.0022 (11)0.0066 (11)0.0033 (10)

Geometric parameters (Å, °)

Mn1—O12.273 (2)C7—C81.477 (5)
Mn1—N22.280 (3)C8—C91.447 (5)
Mn1—N12.344 (3)C8—H8A0.9700
Mn1—Cl22.4544 (11)C8—H8B0.9700
Mn1—Cl12.5252 (11)C9—H9A0.9600
Mn1—Cl1i2.5387 (11)C9—H9B0.9600
Cl1—Mn1i2.5387 (11)C9—H9C0.9600
C1—N11.353 (5)C10—C111.377 (6)
C1—C21.369 (5)C10—C151.379 (6)
C1—H10.9300C10—N41.463 (4)
C2—C31.385 (6)C11—C121.407 (5)
C2—H20.9300C11—H110.9300
C3—C41.393 (5)C12—C131.378 (6)
C3—H30.9300C12—H120.9300
C4—C51.376 (5)C13—C141.387 (6)
C4—H40.9300C13—H130.9300
C5—N11.356 (4)C14—C151.374 (5)
C5—C61.455 (5)C14—H140.9300
C6—N21.340 (5)C15—H150.9300
C6—N41.354 (5)N2—N31.370 (4)
C7—N31.306 (4)O1—H1A0.8500
C7—N41.368 (4)O1—H1C0.8500
O1—Mn1—N284.37 (10)C9—C8—H8B107.7
O1—Mn1—N180.58 (10)C7—C8—H8B107.7
N2—Mn1—N170.80 (10)H8A—C8—H8B107.1
O1—Mn1—Cl290.09 (7)C8—C9—H9A109.5
N2—Mn1—Cl298.54 (8)C8—C9—H9B109.5
N1—Mn1—Cl2166.35 (8)H9A—C9—H9B109.5
O1—Mn1—Cl191.32 (7)C8—C9—H9C109.5
N2—Mn1—Cl1163.18 (8)H9A—C9—H9C109.5
N1—Mn1—Cl192.47 (8)H9B—C9—H9C109.5
Cl2—Mn1—Cl197.71 (3)C11—C10—C15122.9 (4)
O1—Mn1—Cl1i172.57 (7)C11—C10—N4119.2 (4)
N2—Mn1—Cl1i94.62 (8)C15—C10—N4117.8 (4)
N1—Mn1—Cl1i92.13 (8)C10—C11—C12118.2 (4)
Cl2—Mn1—Cl1i97.34 (4)C10—C11—H11120.9
Cl1—Mn1—Cl1i87.55 (4)C12—C11—H11120.9
Mn1—Cl1—Mn1i92.45 (4)C13—C12—C11119.1 (4)
N1—C1—C2122.9 (3)C13—C12—H12120.4
N1—C1—H1118.6C11—C12—H12120.4
C2—C1—H1118.6C12—C13—C14121.1 (4)
C1—C2—C3119.1 (4)C12—C13—H13119.4
C1—C2—H2120.5C14—C13—H13119.4
C3—C2—H2120.5C15—C14—C13120.3 (4)
C2—C3—C4118.7 (3)C15—C14—H14119.8
C2—C3—H3120.6C13—C14—H14119.8
C4—C3—H3120.6C14—C15—C10118.3 (4)
C5—C4—C3119.2 (4)C14—C15—H15120.9
C5—C4—H4120.4C10—C15—H15120.9
C3—C4—H4120.4C1—N1—C5117.9 (3)
N1—C5—C4122.0 (3)C1—N1—Mn1124.2 (2)
N1—C5—C6112.3 (3)C5—N1—Mn1117.9 (2)
C4—C5—C6125.7 (3)C6—N2—N3107.5 (3)
N2—C6—N4108.9 (3)C6—N2—Mn1114.8 (2)
N2—C6—C5121.6 (3)N3—N2—Mn1135.8 (2)
N4—C6—C5129.2 (3)C7—N3—N2107.8 (3)
N3—C7—N4109.9 (3)C6—N4—C7105.9 (3)
N3—C7—C8126.7 (3)C6—N4—C10128.6 (3)
N4—C7—C8123.2 (3)C7—N4—C10125.3 (3)
C9—C8—C7118.3 (3)Mn1—O1—H1A109.5
C9—C8—H8A107.7Mn1—O1—H1C109.5
C7—C8—H8A107.7H1A—O1—H1C109.5

Symmetry codes: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl2ii0.852.283.122 (3)170
O1—H1C···N3ii0.852.122.875 (4)148

Symmetry codes: (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2883).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Klingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 910–918.
  • Kume, S., Kuroiwa, K. & Kimizuka, N. (2006). Chem. Commun. pp. 2442–2444. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography