PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o233.
Published online 2009 January 8. doi:  10.1107/S1600536808043572
PMCID: PMC2968384

(Pyridine-2,6-diyldimethyl­ene)bis­(diphenyl­methanol)

Abstract

In the title compound, C33H29NO2, the central pyridyl ring makes dihedral angles of 42.71 (16), 44.78 (16), 85.47 (12) and 76.74 (12)° with the four phenyl rings. There are two intra­molecular O—H(...)N hydrogen bonds. In the crystal structure, mol­ecules are linked into a chain running along the b axis by a weak C—H(...)π inter­action.

Related literature

For organometallic pincer complexes, see: Dupont et al. (2005 [triangle]); Gauvin et al. (2001 [triangle]); Haenel et al. (2001 [triangle]); van der Boom & Milstein (2003 [triangle]); van der Boom et al. (1997 [triangle]); Vigalok & Milstein (2001 [triangle]); Bergbreiter et al. (1999 [triangle]). The title compound was prepared according to the procedure described by Berg & Holm (1985 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o233-scheme1.jpg

Experimental

Crystal data

  • C33H29NO2
  • M r = 471.57
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o233-efi1.jpg
  • a = 18.492 (3) Å
  • b = 10.1039 (17) Å
  • c = 16.097 (3) Å
  • β = 121.234 (2)°
  • V = 2571.7 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 291 (2) K
  • 0.30 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.980, T max = 0.982
  • 10905 measured reflections
  • 2960 independent reflections
  • 2695 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.127
  • S = 1.04
  • 2960 reflections
  • 331 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043572/is2375sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043572/is2375Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Science Foundation of Jiangsu Higher Education Institutions of China (grant No. 07KJD150101) for financial support.

supplementary crystallographic information

Comment

Currently, organometallic pincer complexes attract much attention because of their widespread applications in catalysis and material sciences (Dupont et al., 2005; van der Boom & Milstein, 2003). Major recent findings have been the generation of efficient dehydrogenation (Haenel et al., 2001) and Heck type catalysts (Bergbreiter et al., 1999), activation of strong C—O (van der Boom et al., 1997) and C—C bonds (Gauvin et al., 2001), and trapping of various intermediates and unusual molecules (Vigalok & Milstein, 2001). 2,6-Bis(2-hydroxy-2,2-diphenylethyl)pyridine, (I), could coordinate with transition metals to form pincer complexes. In our studies, we have got its single crystals and herein reported its crystal structure.

The crystal structure of title compound, C33H29NO2, reveals that all the bond lengths and angles have normal values. Each asymmetric unit in (I) contains four phenyl rings A (C8—C13), B (C14—C19), C (C22—C27) D (C28—C33) and a pyridyl ring E (N1/C1—C5). The rings A, B, C, D and E are all not coplanar, their dihedral angles between rings A and B, B and E, E and C, C and D being 68.13 (15), 44.79 (16), 85.48 (11) and 86.85 (14)°, respectively. The dihedral angles between rings A and E, B and E, C and E, D and E are 42.71 (16), 44.78 (16), 85.47 (12) and 76.74 (12)°, respectively. In the molecule there are two intramolecular O—H···N hydrogen bonds (Table 1 and Fig. 1). In the crystal, there is a weak C—H···π interaction (C31—H31···Cg1i, i: x, -1 + y, z; Cg1 is the centroid of ring A) between the neighbouring molecules (Table 1). Through the weak C—H···π interactions, the one-dimensional chains are formed along the b axis (Fig. 2).

Experimental

2,6-Bis(2-hydroxy-2,2-diphenylethyl)pyridine was prepared by 2,6-lutidine and benzophenone (yield 30%) according to a procedure described in the literature (Berg & Holm, 1985). Colorless crystals were obtained by recrystallized from light petroleum-ethyl acetate (v/v 5/1) at room temperature.

1H-NMR (CDCl3, 400 MHz) δ: 7.17–7.37 (21 H, m, 4Ph + 4-H), 6.69 (2 H, d, J = 7.5 Hz, 3-H + 5-H), 5.25 (2 H, s, 2OH), 3.68 (4 H, s, 2CH2).

Refinement

H atoms bonded to O atoms were located in a difference map and their positional parameters were refined with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Figures

Fig. 1.
A view of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at 30% probability level. Dashed lines indicate hydrogen bonds and all H atoms except those involved in hydrogen bonding have been omitted for clarify.
Fig. 2.
The 1-D chain, viewed along the a axis. Dashed lines indicate the C—H···π interaction between the neighbouring molecules [symmetry code: (i) x, -1 + y, z]. H atoms not involved in the interaction have been omitted ...

Crystal data

C33H29NO2F(000) = 1000
Mr = 471.57Dx = 1.218 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 6093 reflections
a = 18.492 (3) Åθ = 2.4–27.5°
b = 10.1039 (17) ŵ = 0.08 mm1
c = 16.097 (3) ÅT = 291 K
β = 121.234 (2)°Block, colourless
V = 2571.7 (8) Å30.30 × 0.26 × 0.24 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer2960 independent reflections
Radiation source: sealed tube2695 reflections with I > 2σ(I)
graphiteRint = 0.040
[var phi] and ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −24→21
Tmin = 0.980, Tmax = 0.982k = −13→13
10905 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.05P)2 + 1.99P] where P = (Fo2 + 2Fc2)/3
2960 reflections(Δ/σ)max < 0.001
331 parametersΔρmax = 0.41 e Å3
2 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)-2.3376 (0.0303) x - 5.1684 (0.0138) y + 12.7530 (0.0167) z = 0.3615 (0.0248)* 0.0017 (0.0025) C8 * -0.0041 (0.0026) C9 * 0.0000 (0.0028) C10 * 0.0065 (0.0029) C11 * -0.0089 (0.0030) C12 * 0.0048 (0.0028) C13Rms deviation of fitted atoms = 0.005215.5569 (0.0164) x - 0.4094 (0.0178) y + 0.3974 (0.0262) z = 7.3929 (0.0188)Angle to previous plane (with approximate e.s.d.) = 68.13 (0.15)* -0.0126 (0.0027) C14 * 0.0109 (0.0029) C15 * -0.0002 (0.0031) C16 * -0.0092 (0.0030) C17 * 0.0076 (0.0030) C18 * 0.0035 (0.0029) C19Rms deviation of fitted atoms = 0.0085- 8.9504 (0.0218) x + 7.2017 (0.0078) y - 2.9469 (0.0230) z = 2.8842 (0.0118)Angle to previous plane (with approximate e.s.d.) = 44.79 (0.16)* 0.0048 (0.0024) N1 * 0.0001 (0.0031) C1 * 0.0004 (0.0030) C2 * -0.0045 (0.0028) C3 * 0.0087 (0.0031) C4 * -0.0091 (0.0024) C5 * -0.0002 (0.0022) C6Rms deviation of fitted atoms = 0.005416.3880 (0.0176) x + 4.6610 (0.0180) y - 7.9763 (0.0254) z = 6.8874 (0.0075)Angle to previous plane (with approximate e.s.d.) = 85.48 (0.11)* -0.0149 (0.0028) C22 * 0.0006 (0.0031) C23 * 0.0132 (0.0033) C24 * -0.0125 (0.0034) C25 * -0.0023 (0.0036) C26 * 0.0160 (0.0032) C27Rms deviation of fitted atoms = 0.0117- 6.3202 (0.0322) x + 6.0939 (0.0141) y + 12.7724 (0.0177) z = 5.2974 (0.0138)Angle to previous plane (with approximate e.s.d.) = 86.85 (0.14)* 0.0000 (0.0028) C28 * 0.0000 (0.0032) C29 * 0.0000 (0.0033) C30 * 0.0000 (0.0031) C31 * 0.0000 (0.0031) C32 * 0.0000 (0.0029) C33Rms deviation of fitted atoms = 0.0000###############################Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)- 8.9516 (0.0242) x + 7.2008 (0.0111) y - 2.9471 (0.0232) z = 2.8832 (0.0159)* 0.0046 (0.0022) N1 * -0.0001 (0.0025) C1 * 0.0003 (0.0027) C2 * -0.0045 (0.0028) C3 * 0.0088 (0.0028) C4 * -0.0091 (0.0025) C5Rms deviation of fitted atoms = 0.0058- 2.3376 (0.0303) x - 5.1684 (0.0138) y + 12.7530 (0.0167) z = 0.3615 (0.0248)Angle to previous plane (with approximate e.s.d.) = 42.71 (0.16)* 0.0017 (0.0025) C8 * -0.0041 (0.0026) C9 * 0.0000 (0.0028) C10 * 0.0065 (0.0029) C11 * -0.0089 (0.0030) C12 * 0.0048 (0.0028) C13Rms deviation of fitted atoms = 0.0052- 8.9516 (0.0242) x + 7.2008 (0.0111) y - 2.9471 (0.0232) z = 2.8832 (0.0159)Angle to previous plane (with approximate e.s.d.) = 42.71 (0.16)* 0.0046 (0.0022) N1 * -0.0001 (0.0025) C1 * 0.0003 (0.0027) C2 * -0.0045 (0.0028) C3 * 0.0088 (0.0028) C4 * -0.0091 (0.0025) C5Rms deviation of fitted atoms = 0.005815.5569 (0.0164) x - 0.4094 (0.0178) y + 0.3974 (0.0262) z = 7.3929 (0.0188)Angle to previous plane (with approximate e.s.d.) = 44.78 (0.16)* -0.0126 (0.0027) C14 * 0.0109 (0.0029) C15 * -0.0002 (0.0031) C16 * -0.0092 (0.0030) C17 * 0.0076 (0.0030) C18 * 0.0035 (0.0029) C19Rms deviation of fitted atoms = 0.0085- 8.9516 (0.0242) x + 7.2008 (0.0111) y - 2.9471 (0.0232) z = 2.8832 (0.0159)Angle to previous plane (with approximate e.s.d.) = 44.78 (0.16)* 0.0046 (0.0022) N1 * -0.0001 (0.0025) C1 * 0.0003 (0.0027) C2 * -0.0045 (0.0028) C3 * 0.0088 (0.0028) C4 * -0.0091 (0.0025) C5Rms deviation of fitted atoms = 0.005816.3880 (0.0176) x + 4.6610 (0.0180) y - 7.9763 (0.0254) z = 6.8874 (0.0075)Angle to previous plane (with approximate e.s.d.) = 85.47 (0.12)* -0.0149 (0.0028) C22 * 0.0006 (0.0031) C23 * 0.0132 (0.0033) C24 * -0.0125 (0.0034) C25 * -0.0023 (0.0036) C26 * 0.0160 (0.0032) C27Rms deviation of fitted atoms = 0.0117- 8.9516 (0.0242) x + 7.2008 (0.0111) y - 2.9471 (0.0232) z = 2.8832 (0.0159)Angle to previous plane (with approximate e.s.d.) = 85.47 (0.12)* 0.0046 (0.0022) N1 * -0.0001 (0.0025) C1 * 0.0003 (0.0027) C2 * -0.0045 (0.0028) C3 * 0.0088 (0.0028) C4 * -0.0091 (0.0025) C5Rms deviation of fitted atoms = 0.0058- 6.3202 (0.0322) x + 6.0939 (0.0141) y + 12.7724 (0.0177) z = 5.2974 (0.0138)Angle to previous plane (with approximate e.s.d.) = 76.74 (0.12)* 0.0000 (0.0028) C28 * 0.0000 (0.0032) C29 * 0.0000 (0.0033) C30 * 0.0000 (0.0031) C31 * 0.0000 (0.0031) C32 * 0.0000 (0.0029) C33Rms deviation of fitted atoms = 0.0000
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3187 (2)0.9740 (4)0.4335 (3)0.0489 (8)
C20.2728 (3)0.9343 (4)0.4758 (3)0.0537 (9)
H20.28370.97210.53390.064*
C30.2110 (3)0.8385 (4)0.4312 (3)0.0548 (10)
H30.18040.81020.45890.066*
C40.1957 (3)0.7858 (5)0.3442 (3)0.0563 (10)
H40.15350.72280.31150.068*
C50.2441 (2)0.8281 (4)0.3068 (2)0.0427 (7)
C60.3866 (3)1.0774 (4)0.4800 (3)0.0526 (9)
H6A0.37911.12650.52690.063*
H6B0.38031.13910.43050.063*
C70.4777 (2)1.0188 (3)0.5323 (2)0.0416 (7)
C80.5447 (2)1.1246 (4)0.5841 (2)0.0443 (8)
C90.5332 (3)1.2363 (4)0.6268 (3)0.0535 (9)
H90.48151.24980.62230.064*
C100.5985 (3)1.3284 (4)0.6764 (3)0.0532 (9)
H100.59011.40240.70470.064*
C110.6736 (3)1.3097 (4)0.6831 (3)0.0591 (11)
H110.71711.37050.71690.071*
C120.6865 (3)1.2012 (4)0.6403 (3)0.0581 (11)
H120.73801.19060.64390.070*
C130.6231 (3)1.1077 (4)0.5919 (3)0.0542 (9)
H130.63271.03380.56450.065*
C140.4830 (2)0.9113 (4)0.6037 (3)0.0428 (7)
C150.4833 (3)0.9465 (4)0.6872 (3)0.0518 (9)
H150.48671.03530.70390.062*
C160.4785 (3)0.8508 (4)0.7464 (3)0.0547 (10)
H160.47770.87530.80160.066*
C170.4751 (3)0.7177 (4)0.7218 (3)0.0584 (11)
H170.47130.65250.76010.070*
C180.4773 (3)0.6844 (4)0.6424 (3)0.0603 (10)
H180.47630.59530.62750.072*
C190.4810 (3)0.7780 (4)0.5822 (3)0.0574 (10)
H190.48230.75180.52750.069*
C200.2248 (2)0.7717 (4)0.2092 (3)0.0482 (8)
H20A0.18830.83320.15820.058*
H20B0.19380.68950.19740.058*
C210.3036 (2)0.7445 (3)0.2015 (2)0.0392 (7)
C220.2752 (2)0.6821 (4)0.1024 (2)0.0410 (7)
C230.3043 (3)0.5634 (4)0.0909 (3)0.0542 (10)
H230.34420.51680.14540.065*
C240.2749 (3)0.5108 (5)−0.0018 (3)0.0609 (11)
H240.29610.4306−0.00840.073*
C250.2159 (3)0.5761 (4)−0.0816 (3)0.0561 (10)
H250.19490.5396−0.14300.067*
C260.1877 (3)0.6941 (5)−0.0720 (3)0.0631 (12)
H260.14760.7396−0.12710.076*
C270.2175 (3)0.7490 (4)0.0192 (3)0.0602 (11)
H270.19850.83200.02430.072*
C280.3695 (2)0.6555 (3)0.2848 (2)0.0383 (7)
C290.4551 (2)0.6722 (4)0.3192 (3)0.0573 (10)
H290.47290.74060.29540.069*
C300.5141 (3)0.5866 (4)0.3892 (3)0.0618 (11)
H300.57140.59780.41230.074*
C310.4874 (3)0.4844 (4)0.4249 (3)0.0521 (10)
H310.52690.42710.47170.063*
C320.4018 (3)0.4677 (5)0.3905 (3)0.0618 (12)
H320.38400.39920.41430.074*
C330.3429 (2)0.5532 (4)0.3204 (3)0.0470 (9)
H330.28560.54210.29740.056*
N10.3029 (2)0.9203 (3)0.3487 (2)0.0467 (7)
O10.49165 (17)0.9616 (3)0.46054 (19)0.0497 (6)
H10.451 (3)0.917 (5)0.423 (4)0.060*
O20.34180 (18)0.8688 (3)0.2017 (2)0.0503 (6)
H2A0.352 (3)0.911 (5)0.250 (4)0.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.054 (2)0.0442 (19)0.0435 (19)0.0163 (16)0.0219 (17)0.0076 (15)
C20.052 (2)0.066 (2)0.048 (2)0.0145 (19)0.0301 (19)−0.0020 (18)
C30.060 (2)0.059 (2)0.065 (2)0.0100 (19)0.046 (2)0.008 (2)
C40.052 (2)0.063 (2)0.056 (2)−0.0030 (18)0.0294 (19)0.0000 (19)
C50.0350 (16)0.0516 (19)0.0351 (16)0.0133 (14)0.0136 (14)0.0095 (14)
C60.060 (2)0.0430 (19)0.044 (2)0.0092 (17)0.0187 (18)0.0022 (15)
C70.0529 (19)0.0390 (16)0.0342 (16)0.0037 (14)0.0235 (15)−0.0013 (13)
C80.053 (2)0.0441 (18)0.0312 (16)−0.0001 (15)0.0186 (15)0.0053 (14)
C90.061 (2)0.049 (2)0.0378 (19)0.0057 (17)0.0163 (17)−0.0007 (15)
C100.066 (2)0.0429 (19)0.043 (2)0.0024 (17)0.0228 (18)−0.0019 (15)
C110.058 (2)0.049 (2)0.053 (2)−0.0167 (18)0.017 (2)−0.0018 (18)
C120.070 (3)0.055 (2)0.057 (2)−0.023 (2)0.038 (2)−0.0020 (18)
C130.056 (2)0.050 (2)0.058 (2)−0.0109 (17)0.030 (2)−0.0053 (18)
C140.0409 (17)0.0477 (18)0.0437 (18)0.0091 (14)0.0248 (15)0.0041 (14)
C150.066 (2)0.054 (2)0.062 (2)0.0202 (18)0.052 (2)0.0165 (18)
C160.056 (2)0.069 (2)0.063 (2)0.0193 (19)0.047 (2)0.030 (2)
C170.059 (2)0.061 (2)0.059 (2)−0.0047 (19)0.034 (2)0.035 (2)
C180.054 (2)0.054 (2)0.061 (3)−0.0055 (19)0.021 (2)0.011 (2)
C190.061 (2)0.0410 (18)0.062 (2)−0.0001 (17)0.026 (2)0.0063 (18)
C200.0379 (17)0.053 (2)0.0414 (19)−0.0019 (15)0.0122 (15)0.0011 (16)
C210.0383 (16)0.0383 (16)0.0353 (16)−0.0021 (13)0.0151 (14)0.0014 (13)
C220.0394 (17)0.0510 (19)0.0329 (16)−0.0028 (14)0.0189 (14)0.0014 (14)
C230.049 (2)0.068 (3)0.0390 (19)0.0143 (19)0.0181 (17)−0.0059 (17)
C240.056 (2)0.068 (3)0.057 (2)0.013 (2)0.028 (2)−0.026 (2)
C250.064 (2)0.057 (2)0.048 (2)0.0025 (18)0.030 (2)−0.0255 (17)
C260.060 (2)0.072 (3)0.043 (2)0.036 (2)0.0165 (19)0.003 (2)
C270.062 (2)0.056 (2)0.043 (2)−0.0024 (19)0.0134 (19)0.0019 (17)
C280.0431 (17)0.0413 (16)0.0285 (14)−0.0007 (13)0.0172 (13)0.0062 (12)
C290.0421 (19)0.061 (2)0.052 (2)−0.0080 (17)0.0125 (17)0.0114 (18)
C300.0364 (19)0.064 (2)0.067 (3)−0.0021 (17)0.0139 (19)0.005 (2)
C310.060 (2)0.057 (2)0.0392 (17)0.0355 (18)0.0257 (17)0.0174 (16)
C320.069 (3)0.072 (3)0.061 (2)0.037 (2)0.046 (2)0.041 (2)
C330.0476 (18)0.060 (2)0.057 (2)0.0232 (16)0.0431 (18)0.0297 (18)
N10.0441 (16)0.0486 (17)0.0441 (16)0.0099 (13)0.0205 (13)0.0102 (13)
O10.0531 (15)0.0579 (16)0.0533 (15)−0.0102 (12)0.0382 (13)−0.0174 (13)
O20.0600 (16)0.0400 (13)0.0445 (14)−0.0098 (12)0.0226 (13)0.0057 (11)

Geometric parameters (Å, °)

C1—N11.353 (5)C17—H170.9300
C1—C21.394 (6)C18—C191.382 (6)
C1—C61.501 (6)C18—H180.9300
C2—C31.381 (6)C19—H190.9300
C2—H20.9300C20—C211.549 (5)
C3—C41.384 (6)C20—H20A0.9700
C3—H30.9300C20—H20B0.9700
C4—C51.381 (5)C21—O21.440 (4)
C4—H40.9300C21—C221.533 (5)
C5—N11.321 (5)C21—C281.548 (5)
C5—C201.530 (5)C22—C231.366 (5)
C6—C71.557 (5)C22—C271.381 (5)
C6—H6A0.9700C23—C241.401 (5)
C6—H6B0.9700C23—H230.9300
C7—O11.431 (4)C24—C251.351 (6)
C7—C81.518 (5)C24—H240.9300
C7—C141.547 (5)C25—C261.342 (5)
C8—C91.394 (5)C25—H250.9300
C8—C131.399 (6)C26—C271.388 (6)
C9—C101.401 (6)C26—H260.9300
C9—H90.9300C27—H270.9300
C10—C111.350 (6)C28—C291.390 (5)
C10—H100.9300C28—C331.390 (4)
C11—C121.380 (6)C29—C301.390 (6)
C11—H110.9300C29—H290.9300
C12—C131.388 (5)C30—C311.390 (6)
C12—H120.9300C30—H300.9300
C13—H130.9300C31—C321.390 (6)
C14—C191.387 (5)C31—H310.9300
C14—C151.387 (5)C32—C331.390 (5)
C15—C161.392 (5)C32—H320.9300
C15—H150.9300C33—H330.9300
C16—C171.394 (6)O1—H10.82 (5)
C16—H160.9300O2—H2A0.82 (5)
C17—C181.342 (7)
N1—C1—C2120.6 (4)C17—C18—C19122.3 (4)
N1—C1—C6118.0 (4)C17—C18—H18118.9
C2—C1—C6121.4 (4)C19—C18—H18118.9
C3—C2—C1119.8 (4)C18—C19—C14119.5 (4)
C3—C2—H2120.1C18—C19—H19120.2
C1—C2—H2120.1C14—C19—H19120.2
C2—C3—C4118.4 (4)C5—C20—C21114.8 (3)
C2—C3—H3120.8C5—C20—H20A108.6
C4—C3—H3120.8C21—C20—H20A108.6
C5—C4—C3118.9 (4)C5—C20—H20B108.6
C5—C4—H4120.5C21—C20—H20B108.6
C3—C4—H4120.5H20A—C20—H20B107.5
N1—C5—C4122.9 (4)O2—C21—C22105.3 (3)
N1—C5—C20118.7 (3)O2—C21—C28109.9 (3)
C4—C5—C20118.3 (4)C22—C21—C28110.7 (3)
C1—C6—C7113.3 (3)O2—C21—C20109.0 (3)
C1—C6—H6A108.9C22—C21—C20109.0 (3)
C7—C6—H6A108.9C28—C21—C20112.6 (3)
C1—C6—H6B108.9C23—C22—C27117.3 (4)
C7—C6—H6B108.9C23—C22—C21123.8 (3)
H6A—C6—H6B107.7C27—C22—C21119.0 (3)
O1—C7—C8106.9 (3)C22—C23—C24121.0 (4)
O1—C7—C14110.4 (3)C22—C23—H23119.5
C8—C7—C14111.6 (3)C24—C23—H23119.5
O1—C7—C6108.3 (3)C25—C24—C23120.3 (4)
C8—C7—C6112.1 (3)C25—C24—H24119.9
C14—C7—C6107.6 (3)C23—C24—H24119.9
C9—C8—C13118.1 (4)C26—C25—C24119.7 (4)
C9—C8—C7123.4 (3)C26—C25—H25120.2
C13—C8—C7118.4 (3)C24—C25—H25120.2
C8—C9—C10120.8 (4)C25—C26—C27120.8 (4)
C8—C9—H9119.6C25—C26—H26119.6
C10—C9—H9119.6C27—C26—H26119.6
C11—C10—C9120.0 (4)C22—C27—C26120.9 (4)
C11—C10—H10120.0C22—C27—H27119.5
C9—C10—H10120.0C26—C27—H27119.5
C10—C11—C12120.5 (4)C29—C28—C33120.0 (3)
C10—C11—H11119.7C29—C28—C21119.8 (3)
C12—C11—H11119.7C33—C28—C21120.1 (3)
C11—C12—C13120.5 (4)C28—C29—C30120.0 (4)
C11—C12—H12119.7C28—C29—H29120.0
C13—C12—H12119.7C30—C29—H29120.0
C12—C13—C8120.0 (4)C31—C30—C29120.0 (4)
C12—C13—H13120.0C31—C30—H30120.0
C8—C13—H13120.0C29—C30—H30120.0
C19—C14—C15118.6 (4)C30—C31—C32120.0 (3)
C19—C14—C7120.8 (3)C30—C31—H31120.0
C15—C14—C7120.5 (3)C32—C31—H31120.0
C14—C15—C16121.0 (4)C33—C32—C31120.0 (4)
C14—C15—H15119.5C33—C32—H32120.0
C16—C15—H15119.5C31—C32—H32120.0
C15—C16—C17119.0 (4)C32—C33—C28120.0 (3)
C15—C16—H16120.5C32—C33—H33120.0
C17—C16—H16120.5C28—C33—H33120.0
C18—C17—C16119.6 (3)C5—N1—C1119.2 (3)
C18—C17—H17120.2C7—O1—H1109 (3)
C16—C17—H17120.2C21—O2—H2A109 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82 (5)2.34 (5)3.013 (4)139 (4)
O2—H2A···N10.82 (5)2.20 (5)2.854 (4)136 (4)
C31—H31···Cg1i0.933.083.973 (3)162

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2375).

References

  • Berg, J. M. & Holm, R. H. (1985). J. Am. Chem. Soc.107, 917–925.
  • Bergbreiter, D. E., Osburn, P. L. & Liu, Y.-S. (1999). J. Am. Chem. Soc.121, 9531–9538.
  • Boom, M. E. van der, Liou, S.-Y., Ben-David, Y., Vigalok, A. & Milstein, D. (1997). Angew. Chem. Int. Ed. Engl.36, 625–626.
  • Boom, M. E. van der & Milstein, D. (2003). Chem. Rev.103, 1759–1792. [PubMed]
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev.105, 2527–2571. [PubMed]
  • Gauvin, R. M., Rozenberg, H., Shimon, L. J. W. & Milstein, D. (2001). Organometallics, 20, 1719–1724.
  • Haenel, M. W., Oevers, S., Angermund, K., Kaska, W. C., Fan, H.-J. & Hall, M. B. (2001). Angew. Chem. Int. Ed.40, 3596–3600. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vigalok, A. & Milstein, D. (2001). Acc. Chem. Res.34, 798–807. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography