PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m241.
Published online 2009 January 31. doi:  10.1107/S1600536809002682
PMCID: PMC2968381

Aqua­bis(2-iodo­acetato-κO)(1,10-phenanthroline-κ2 N,N′)copper(II)

Abstract

In the title compound, [Cu(C2H2IO2)2(C12H8N2)(H2O)], the CuII ion is coordinated by two N atoms [Cu—N = 2.013 (4) and 2.024 (4) Å] from a 1,10-phenanthroline ligand and three O atoms [Cu—O = 1.940 (4)–2.261 (4) Å] from two carboxyl ligands and a water mol­ecule in a distorted square-pyramidal geometry. One iodo­acetate O atom [Cu—O = 2.775 (4) Å] completes the coordination to form a distorted octa­hedron. Inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further packed by π–π inter­actions between the 1,10-phenanthroline ligands into layers parallel to the ab plane. The crystal packing also exhibits short inter­molecular I(...)I contacts of 3.6772 (9) Å and weak C—H(...)O hydrogen bonds.

Related literature

The related crystal structure of aqua­bis(2,4-dichlorophenoxy­acetato-O)(1,10-phenanthroline-κ2 N,N′)copper(II) has been reported by Liu et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m241-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H2IO2)2(C12H8N2)(H2O)]
  • M r = 631.63
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m241-efi1.jpg
  • a = 9.5156 (11) Å
  • b = 10.6293 (12) Å
  • c = 11.3441 (13) Å
  • α = 65.803 (2)°
  • β = 65.598 (2)°
  • γ = 72.451 (2)°
  • V = 940.94 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.47 mm−1
  • T = 273 (2) K
  • 0.26 × 0.23 × 0.21 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.389, T max = 0.454 (expected range = 0.336–0.391)
  • 4948 measured reflections
  • 3305 independent reflections
  • 2934 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.104
  • S = 1.01
  • 3305 reflections
  • 237 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 1.53 e Å−3
  • Δρmin = −1.68 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected interatomic distances (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002682/cv2511sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002682/cv2511Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Postgraduate Foundation of Taishan University (grant No. Y07-2-15) for financial support.

supplementary crystallographic information

Comment

Metal complexes with carboxylates are among the most investigated complexes in the field of coordination chemistry. Due to their versatile bonding modes with metal ions, they have also been used in the synthesis of mononuclear monomeric and polymeric complexes (Liu et al., 2006). In order to develop some new topological structures, we study the reaction of the copper(II) ion and 2-iodoacetic acid with the presence of 1,10-phenanthroline.

The molecular structure of the title complex is shown in Fig.1. The Cu atom exhibits a six-coordinated distorted octahedral pyramidal geometry with two carboxyl O atoms from (Cu2—O4 2.000 (4) Å, Cu2—O5 2.775 (4) Å), a water molecule (Cu—O 2.261 (4) Å) and a nitrogen atom (Cu2—N2 2.024 (4) Å) occupying the equatorial planar position. A nitrogen atom N2 (Cu2—N2 2.013 (4) Å) and a carboxyl O atom (Cu2—O2 1.940 (4) Å) occupy the apical positions. The displacement of the metal atom from the basal plane is 0.0640 (2) Å. The crystal packing exhibits short intermolecular I···I contacts (Table 1) and weak C—H···O hydrogen bonds (Table 2).

Experimental

The reaction was carried out by the solvothermal method. 2-iodoacetic acid(0.372 g,2 mmol) and cupric acetate(0.199 g, 1 mmol) and 1,10-phenanthroline(0.180 g, 1 mmol) were added to the airtight vessel with 20 ml water. The resulting green solution was filtered. The filtrate was placed for sevaral days yielding blue block-shaped crystals.

The yield is 81%. Elemental analysis: calc. for C16H14CuI2N2O5: C 30.42, H 2.23, N 4.43; found: C 30.15, H 2.49, N 4.22. The elemental analyses were performed with PERKIN ELMER MODEL 2400 SERIES II.

Refinement

All the H atoms were found in Fourier map, but placed in idealized positions(C—H 0.93–0.97 Å, O—H 0.85 Å), with the Uiso(H) values were set at 1.2Ueq(C,O) of the parent atoms.

Figures

Fig. 1.
The molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids.

Crystal data

[Cu(C2H2IO2)2(C12H8N2)(H2O)]Z = 2
Mr = 631.63F(000) = 598
Triclinic, P1Dx = 2.229 Mg m3
a = 9.5156 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6293 (12) ÅCell parameters from 3047 reflections
c = 11.3441 (13) Åθ = 2.6–28.1°
α = 65.803 (2)°µ = 4.47 mm1
β = 65.598 (2)°T = 273 K
γ = 72.451 (2)°Block, blue
V = 940.94 (19) Å30.26 × 0.23 × 0.21 mm

Data collection

Bruker APEXII diffractometer3305 independent reflections
Radiation source: fine-focus sealed tube2934 reflections with I > 2σ(I)
graphiteRint = 0.016
[var phi] and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.389, Tmax = 0.454k = −12→10
4948 measured reflectionsl = −13→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.056P)2 + 3.6149P] where P = (Fo2 + 2Fc2)/3
3305 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 1.53 e Å3
3 restraintsΔρmin = −1.68 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu20.76967 (7)0.67482 (6)0.13753 (6)0.02670 (17)
I10.95532 (7)0.21497 (5)0.43653 (6)0.06644 (19)
I20.43146 (5)0.18948 (4)0.45215 (4)0.04345 (15)
N10.6118 (5)0.8490 (4)0.1546 (4)0.0255 (9)
N20.9024 (5)0.8189 (4)−0.0095 (4)0.0280 (9)
O10.7777 (4)0.6019 (4)−0.0268 (4)0.0341 (9)
H1C0.87110.5671−0.06350.031 (15)*
H1B0.72720.53400.02310.06 (2)*
O20.6142 (4)0.5607 (4)0.2794 (4)0.0359 (9)
O30.6083 (7)0.4189 (6)0.1825 (5)0.0661 (15)
O40.9474 (4)0.5270 (4)0.1793 (4)0.0329 (8)
O50.8852 (5)0.6118 (4)0.3468 (4)0.0429 (10)
C10.4672 (6)0.8592 (6)0.2411 (5)0.0307 (11)
H1A0.42650.77820.30290.037*
C20.3740 (7)0.9891 (6)0.2417 (6)0.0382 (13)
H20.27250.99340.30320.046*
C30.4311 (7)1.1090 (6)0.1529 (6)0.0382 (13)
H30.36931.19540.15360.046*
C40.5840 (6)1.1012 (5)0.0602 (6)0.0302 (11)
C50.6710 (6)0.9677 (5)0.0657 (5)0.0241 (10)
C60.8265 (6)0.9512 (5)−0.0244 (5)0.0249 (10)
C70.8936 (6)1.0689 (6)−0.1235 (5)0.0305 (11)
C81.0481 (7)1.0437 (6)−0.2087 (6)0.0380 (13)
H81.09901.1181−0.27420.046*
C91.1228 (7)0.9109 (6)−0.1952 (6)0.0392 (13)
H91.22400.8936−0.25350.047*
C101.0475 (6)0.8002 (6)−0.0934 (6)0.0356 (12)
H101.10120.7096−0.08410.043*
C110.8014 (8)1.2041 (6)−0.1279 (7)0.0432 (14)
H110.84401.2830−0.19350.052*
C120.6551 (7)1.2204 (6)−0.0396 (6)0.0381 (13)
H120.59971.3098−0.04360.046*
C130.5693 (6)0.4601 (6)0.2801 (6)0.0336 (12)
C140.4522 (9)0.3957 (7)0.4171 (7)0.0550 (19)
H14A0.35070.45390.42280.066*
H14B0.48250.39500.48910.066*
C150.9541 (6)0.5230 (5)0.2913 (5)0.0293 (11)
C161.0576 (7)0.3988 (6)0.3569 (6)0.0354 (12)
H16A1.07000.41440.43030.043*
H16B1.16020.38720.28940.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu20.0264 (3)0.0205 (3)0.0253 (3)−0.0018 (2)−0.0022 (3)−0.0080 (2)
I10.0913 (4)0.0355 (3)0.0650 (3)−0.0196 (2)−0.0323 (3)0.0035 (2)
I20.0464 (3)0.0329 (2)0.0460 (3)−0.01190 (17)−0.00496 (18)−0.01484 (18)
N10.028 (2)0.025 (2)0.022 (2)−0.0010 (17)−0.0070 (17)−0.0096 (17)
N20.029 (2)0.026 (2)0.026 (2)−0.0039 (18)−0.0058 (18)−0.0100 (18)
O10.036 (2)0.032 (2)0.0267 (19)0.0013 (18)−0.0049 (16)−0.0137 (17)
O20.040 (2)0.031 (2)0.031 (2)−0.0118 (17)0.0021 (17)−0.0139 (16)
O30.093 (4)0.070 (3)0.038 (3)−0.050 (3)0.012 (2)−0.030 (2)
O40.034 (2)0.0286 (19)0.0270 (19)0.0040 (16)−0.0075 (16)−0.0095 (16)
O50.049 (2)0.034 (2)0.044 (2)−0.0013 (19)−0.0081 (19)−0.0224 (19)
C10.028 (3)0.035 (3)0.024 (3)−0.003 (2)−0.003 (2)−0.012 (2)
C20.031 (3)0.046 (3)0.032 (3)0.003 (3)−0.007 (2)−0.018 (3)
C30.036 (3)0.037 (3)0.043 (3)0.009 (2)−0.019 (3)−0.019 (3)
C40.034 (3)0.027 (3)0.037 (3)−0.001 (2)−0.019 (2)−0.013 (2)
C50.031 (3)0.022 (2)0.025 (2)−0.002 (2)−0.014 (2)−0.009 (2)
C60.025 (3)0.025 (3)0.025 (2)0.000 (2)−0.010 (2)−0.010 (2)
C70.035 (3)0.029 (3)0.030 (3)−0.011 (2)−0.013 (2)−0.006 (2)
C80.040 (3)0.042 (3)0.032 (3)−0.020 (3)−0.010 (2)−0.005 (2)
C90.031 (3)0.049 (4)0.032 (3)−0.010 (3)−0.001 (2)−0.016 (3)
C100.032 (3)0.038 (3)0.031 (3)−0.002 (2)−0.002 (2)−0.017 (2)
C110.055 (4)0.024 (3)0.051 (4)−0.013 (3)−0.025 (3)−0.001 (3)
C120.042 (3)0.025 (3)0.050 (4)−0.002 (2)−0.022 (3)−0.010 (3)
C130.033 (3)0.030 (3)0.031 (3)−0.010 (2)−0.001 (2)−0.010 (2)
C140.071 (5)0.048 (4)0.039 (4)−0.034 (4)0.013 (3)−0.022 (3)
C150.029 (3)0.024 (3)0.028 (3)−0.007 (2)−0.002 (2)−0.007 (2)
C160.040 (3)0.034 (3)0.033 (3)−0.003 (2)−0.015 (3)−0.010 (2)

Geometric parameters (Å, °)

Cu2—O21.940 (4)C3—C41.402 (8)
Cu2—O42.000 (4)C3—H30.9300
Cu2—O52.775 (4)C4—C51.402 (7)
Cu2—N22.013 (4)C4—C121.433 (8)
Cu2—N12.024 (4)C5—C61.416 (7)
Cu2—O12.261 (4)C6—C71.404 (7)
I1—C162.134 (6)C7—C81.403 (8)
I2—I2i3.6772 (9)C7—C111.434 (8)
I2—C142.117 (6)C8—C91.352 (8)
N1—C11.322 (6)C8—H80.9300
N1—C51.357 (6)C9—C101.394 (8)
N2—C101.325 (7)C9—H90.9300
N2—C61.349 (6)C10—H100.9300
O1—H1C0.8500C11—C121.348 (9)
O1—H1B0.8500C11—H110.9300
O2—C131.262 (7)C12—H120.9300
O3—C131.230 (7)C13—C141.511 (8)
O4—C151.282 (6)C14—H14A0.9700
O5—C151.221 (6)C14—H14B0.9700
C1—C21.399 (8)C15—C161.510 (7)
C1—H1A0.9300C16—H16A0.9700
C2—C31.359 (9)C16—H16B0.9700
C2—H20.9300
Cg1···Cg3ii3.505 (6)Cg2···Cg4iii3.634 (6)
Cg1···Cg4iii3.584 (6)I2···I2i3.6772 (9)
Cg2···Cg3ii3.625 (6)
O2—Cu2—O492.78 (16)C7—C6—C5120.1 (4)
O2—Cu2—N2170.83 (17)C8—C7—C6116.6 (5)
O4—Cu2—N296.04 (17)C8—C7—C11125.3 (5)
O2—Cu2—N189.71 (17)C6—C7—C11118.1 (5)
O4—Cu2—N1153.55 (16)C9—C8—C7119.8 (5)
N2—Cu2—N181.29 (17)C9—C8—H8120.1
O2—Cu2—O193.26 (15)C7—C8—H8120.1
O4—Cu2—O192.60 (14)C8—C9—C10119.7 (5)
N2—Cu2—O188.81 (16)C8—C9—H9120.2
N1—Cu2—O1113.56 (15)C10—C9—H9120.2
C1—N1—C5118.9 (4)N2—C10—C9122.7 (5)
C1—N1—Cu2128.7 (4)N2—C10—H10118.7
C5—N1—Cu2112.3 (3)C9—C10—H10118.7
C10—N2—C6117.8 (5)C12—C11—C7122.0 (5)
C10—N2—Cu2129.0 (4)C12—C11—H11119.0
C6—N2—Cu2113.1 (3)C7—C11—H11119.0
Cu2—O1—H1C109.3C11—C12—C4120.6 (5)
Cu2—O1—H1B99.7C11—C12—H12119.7
H1C—O1—H1B106.6C4—C12—H12119.7
C13—O2—Cu2130.1 (3)O3—C13—O2126.2 (5)
C15—O4—Cu2108.2 (3)O3—C13—C14122.0 (5)
N1—C1—C2121.5 (5)O2—C13—C14111.7 (5)
N1—C1—H1A119.2C13—C14—I2113.9 (4)
C2—C1—H1A119.2C13—C14—H14A108.8
C3—C2—C1120.4 (5)I2—C14—H14A108.8
C3—C2—H2119.8C13—C14—H14B108.8
C1—C2—H2119.8I2—C14—H14B108.8
C2—C3—C4119.3 (5)H14A—C14—H14B107.7
C2—C3—H3120.4O5—C15—O4125.0 (5)
C4—C3—H3120.4O5—C15—C16118.5 (5)
C5—C4—C3117.3 (5)O4—C15—C16116.5 (4)
C5—C4—C12118.6 (5)C15—C16—I1109.7 (4)
C3—C4—C12124.1 (5)C15—C16—H16A109.7
N1—C5—C4122.6 (5)I1—C16—H16A109.7
N1—C5—C6116.8 (4)C15—C16—H16B109.7
C4—C5—C6120.6 (5)I1—C16—H16B109.7
N2—C6—C7123.4 (5)H16A—C16—H16B108.2
N2—C6—C5116.5 (4)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y+2, −z; (iii) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1B···O30.851.842.639 (6)156
O1—H1C···O4iv0.851.972.785 (5)161
C3—H3···O1iii0.932.443.240 (7)144
C11—H11···O5ii0.932.713.508 (8)144
C10—H10···O3iv0.932.683.431 (8)138
C14—H14B···O2v0.972.593.436 (8)146
C14—H14A···O5v0.972.643.219 (8)119

Symmetry codes: (iv) −x+2, −y+1, −z; (iii) −x+1, −y+2, −z; (ii) −x+2, −y+2, −z; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2511).

References

  • Liu, J.-W., Zhu, B., Tian, Y. & Gu, C.-S. (2006). Acta Cryst. E62, m2030–m2032.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography