PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o274.
Published online 2009 January 10. doi:  10.1107/S1600536809000440
PMCID: PMC2968376

4-Ethyl-3-(2-thienylmeth­yl)-Δ2-1,2,4-triazoline-5-thione

Abstract

The title compound, C9H11N3S2, exists in the thione form in the crystal structure. The central triazole ring is almost perpendicular to the thio­phene ring which is disordered over two orientations [dihedral angles of 88.5 (7) and 85.7 (8)° for the two orientations]. The crystal structure is stabilized by strong inter­molecular N—H(...)S hydrogen bonds, forming centrosymmetric dimers, and by some weak C—H(...)S inter­actions.

Related literature

For background on the applications of 1,2,4-triazole and its derivatives, see: Ünver et al. (2006 [triangle]); Dobosz et al. (2002 [triangle]); Jian et al. (2005 [triangle]); Maliszewska-Guz et al. (2005 [triangle]); Al-Soud et al. (2004 [triangle]); Amir & Shikha (2004 [triangle]); Collin et al. (2003 [triangle]); Demirayak et al. (2000 [triangle]); Palaska et al. (2002 [triangle]); Shivarama et al. (2006 [triangle]). For details of the synthesis, see: Wujec et al. (2004 [triangle], 2007 [triangle]). For related structures, see: Yilmaz et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o274-scheme1.jpg

Experimental

Crystal data

  • C9H11N3S2
  • M r = 225.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o274-efi1.jpg
  • a = 6.813 (1) Å
  • b = 17.119 (2) Å
  • c = 9.846 (1) Å
  • β = 100.88 (1)°
  • V = 1127.7 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.44 mm−1
  • T = 295 (2) K
  • 0.47 × 0.30 × 0.16 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer
  • Absorption correction: none
  • 2735 measured reflections
  • 2592 independent reflections
  • 1130 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.111
  • S = 0.98
  • 2592 reflections
  • 147 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and enCIFer (Allen et al., 2004 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000440/at2696sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000440/at2696Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

1,2,4-Triazole and its derivatives represent one of the most biologically active classes of compounds possessing a wide spectrum of activities, such as antimicrobial, fungicidal, anti-inflammatory, antiviral, antitumor or analgesic activity (Al-Soud et al., 2004; Amir & Shikha, 2004; Collin et al., 2003; Demirayak et al., 2000; Maliszewska-Guz et al., 2005; Palaska et al., 2002; Shivarama et al., 2006; Wujec et al. 2007). The 1,2,4-triazole nucleus has been incorporated into a wide variety of therapeutically important drugs e.g. Fluconazole, Itraconazole, Anastrazole, Ribavirin. In recent years 1,2,4-triazole finds an important place in medicinal chemistry as material for the preparation of antibacterial agents (Demirayak et al., 2000). In this context, we described the synthesis and antibacterial activity of a series of 1,2,4-triazoline-5-thione derivatives (Wujec et al. 2004). In the present paper we report the structure of one of them: 4-ethyl-3-(thiophene-2-yl-methyl)-Δ2-1,2,4-triazoline-5-thione (I). This compound inhibite the growth of Trichophyton spp.

In the title compound (Fig. 1), the C5—S1 bond length [1.673 (2) Å] is within the values observed for a C=S double bond. In the planar 1,2,4-triazole ring the C3=N2 bond is clearly double, being much shorter then the other C—N bonds. This distance is also comparable to literature data (Yilmaz et al., 2005). The thiophene ring is disordered over two orientatians with respect to the C6—C7 bond; the dihedral angles between the triazole and the thiophene rings for the two orientations of the second one are 88.5 (7) and 85.7 (8)°. Atoms C6 and C11 lie in the plane of triazole, whereas the ethyl atom C12 is signifficantly displaced from the plane of central system as indicate from the torsion angle C5—N4—C11—C12, being of 83.3 (3)°.

The crystal structure is stabilized by strong intermolecular N1—H1···S1 hydrogen bonds, forming centrosymmetric dimers (Fig. 2), together with some weak C—H···S interactions (Table 1).

Experimental

4-Ethyl-3-(thiophene-2-yl-methyl)-Δ2-1,2,4-triazoline-5-thione was synthesized according to the method which was described in a previous paper (Wujec et al., 2004). Prism-shaped colourless single crystals, suitable for X-ray diffraction measurements, were obtained by the slow evaporation of a 2-propanol solution of the compound.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with N1—H1 distance of 0.86Å and C—H bond distances in the range 0.93 - 0.97 Å. The displacement parameters of the H atoms were Uiso(H) = 1.2 Ueq(C/N). The thiophene ring is disordered over two positions related by a 180° rotation around the C6—C7 bond. This disorder gives rise to two positions for each of the S2 and C8 atoms; the refinement of their occupancies showed that one of these positions is predominant, with an occupancy of 0.538 (4) for S2 and C8 atoms [the other one is with an occupancy of 0.462 (6) for S2' and C8' atoms]. The positions of C9 and C10 are effectively not affected by the disorder.

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Both disordered components are shown.
Fig. 2.
The molecular packing of (I), viewed down the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C9H11N3S2F(000) = 472
Mr = 225.33Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 69 reflections
a = 6.813 (1) Åθ = 6–14°
b = 17.119 (2) ŵ = 0.44 mm1
c = 9.846 (1) ÅT = 295 K
β = 100.88 (1)°Prism, colourless
V = 1127.7 (2) Å30.47 × 0.30 × 0.16 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometerRint = 0.026
Radiation source: fine-focus sealed tubeθmax = 27.6°, θmin = 3.9°
graphiteh = −8→8
ω–2θ scansk = 0→22
2735 measured reflectionsl = 0→12
2592 independent reflections3 standard reflections every 100 reflections
1130 reflections with I > 2σ(I) intensity decay: 0.1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2245P] where P = (Fo2 + 2Fc2)/3
2592 reflections(Δ/σ)max = 0.002
147 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N10.2725 (3)0.49647 (12)0.6098 (2)0.0563 (6)
H10.16840.46750.58680.068*
N20.4538 (3)0.46832 (13)0.6760 (2)0.0598 (6)
C30.5669 (4)0.52970 (16)0.6930 (3)0.0547 (7)
N40.4644 (3)0.59498 (12)0.6394 (2)0.0504 (5)
C50.2730 (3)0.57271 (16)0.5846 (2)0.0501 (6)
S10.08621 (10)0.62899 (4)0.50362 (7)0.0654 (3)
C60.7818 (4)0.52769 (17)0.7589 (3)0.0703 (8)
H6A0.86010.54690.69330.084*
H6B0.82050.47390.77990.084*
S20.7156 (9)0.5621 (3)1.0253 (6)0.0683 (11)0.538 (6)
C80.982 (3)0.6272 (12)0.921 (2)0.123 (10)0.538 (6)
H81.07600.63810.86620.148*0.538 (6)
C8'0.757 (3)0.5727 (13)1.003 (2)0.079 (9)0.462 (6)
H8'0.65490.53831.01380.094*0.462 (6)
S2'1.0016 (7)0.6482 (5)0.9087 (7)0.0949 (14)0.462 (6)
C70.8316 (5)0.57473 (19)0.8885 (3)0.0588 (8)
C90.9766 (6)0.6655 (2)1.0589 (5)0.1017 (13)
H91.05360.70771.09740.122*
C100.8435 (6)0.6283 (2)1.1134 (3)0.0885 (10)
H100.82410.64031.20200.106*
C110.5372 (4)0.67518 (16)0.6362 (3)0.0670 (8)
H11A0.47820.69900.54850.080*
H11B0.68100.67440.64250.080*
C120.4875 (5)0.72417 (17)0.7527 (3)0.0815 (9)
H12A0.53690.77630.74620.098*
H12B0.54880.70170.83970.098*
H12C0.34520.72570.74630.098*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0502 (12)0.0529 (14)0.0614 (14)−0.0035 (10)−0.0008 (10)−0.0031 (11)
N20.0522 (13)0.0619 (14)0.0620 (15)0.0057 (11)0.0022 (11)−0.0059 (12)
C30.0486 (15)0.0655 (17)0.0495 (16)0.0044 (14)0.0081 (12)−0.0053 (15)
N40.0448 (12)0.0561 (13)0.0489 (12)−0.0051 (11)0.0056 (9)−0.0040 (10)
C50.0512 (15)0.0537 (16)0.0441 (14)−0.0029 (12)0.0056 (12)−0.0055 (13)
S10.0578 (4)0.0571 (4)0.0739 (5)−0.0009 (3)−0.0067 (3)0.0003 (4)
C60.0456 (16)0.088 (2)0.075 (2)0.0055 (15)0.0052 (14)−0.0120 (17)
S20.070 (2)0.0744 (16)0.0589 (15)−0.0131 (15)0.0081 (15)−0.0015 (13)
C80.159 (19)0.120 (15)0.102 (10)0.015 (11)0.056 (10)0.031 (9)
C8'0.057 (9)0.096 (10)0.084 (15)−0.022 (6)0.015 (6)0.018 (7)
S2'0.0717 (17)0.110 (3)0.097 (3)−0.0346 (17)−0.0010 (15)0.010 (2)
C70.0398 (15)0.0610 (19)0.071 (2)−0.0056 (14)−0.0015 (15)0.0057 (17)
C90.104 (3)0.072 (2)0.109 (3)−0.029 (2)−0.033 (2)0.008 (2)
C100.116 (3)0.081 (2)0.061 (2)0.006 (2)−0.002 (2)−0.002 (2)
C110.0566 (17)0.0687 (19)0.0731 (19)−0.0165 (14)0.0055 (14)0.0078 (17)
C120.079 (2)0.0605 (18)0.098 (2)−0.0082 (15)−0.0005 (17)−0.0105 (18)

Geometric parameters (Å, °)

N1—C51.329 (3)C8—H80.9300
N1—N21.370 (3)C8'—C71.32 (2)
N1—H10.8600C8'—C101.48 (2)
N2—C31.295 (3)C8'—H8'0.9300
C3—N41.370 (3)S2'—C91.549 (10)
C3—C61.485 (3)S2'—C71.695 (6)
N4—C51.368 (3)C9—C101.304 (5)
N4—C111.462 (3)C9—H90.9300
C5—S11.673 (2)C10—H100.9300
C6—C71.493 (4)C11—C121.510 (4)
C6—H6A0.9700C11—H11A0.9700
C6—H6B0.9700C11—H11B0.9700
S2—C101.584 (7)C12—H12A0.9600
S2—C71.699 (6)C12—H12B0.9600
C8—C71.355 (17)C12—H12C0.9600
C8—C91.51 (2)
C5—N1—N2113.6 (2)C8—C7—C6126.8 (11)
C5—N1—H1123.2C8'—C7—S2'106.5 (10)
N2—N1—H1123.2C6—C7—S2'122.7 (4)
C3—N2—N1103.7 (2)C8—C7—S2110.0 (11)
N2—C3—N4111.4 (2)C6—C7—S2123.0 (3)
N2—C3—C6123.4 (2)S2'—C7—S2114.3 (4)
N4—C3—C6125.2 (3)C10—C9—C8107.1 (7)
C5—N4—C3107.7 (2)C10—C9—S2'120.6 (4)
C5—N4—C11123.7 (2)C10—C9—H9126.5
C3—N4—C11128.6 (2)C8—C9—H9126.5
N1—C5—N4103.6 (2)S2'—C9—H9112.5
N1—C5—S1128.8 (2)C9—C10—C8'103.1 (8)
N4—C5—S1127.6 (2)C9—C10—S2118.6 (4)
C3—C6—C7114.1 (2)C9—C10—H10120.7
C3—C6—H6A108.7C8'—C10—H10136.2
C7—C6—H6A108.7S2—C10—H10120.7
C3—C6—H6B108.7N4—C11—C12112.3 (2)
C7—C6—H6B108.7N4—C11—H11A109.1
H6A—C6—H6B107.6C12—C11—H11A109.1
C10—S2—C793.0 (4)N4—C11—H11B109.1
C7—C8—C9110.7 (14)C12—C11—H11B109.1
C7—C8—H8124.7H11A—C11—H11B107.9
C9—C8—H8124.7C11—C12—H12A109.5
C7—C8'—C10116.3 (13)C11—C12—H12B109.5
C7—C8'—H8'121.9H12A—C12—H12B109.5
C10—C8'—H8'121.9C11—C12—H12C109.5
C9—S2'—C793.4 (4)H12A—C12—H12C109.5
C8'—C7—C8102.3 (15)H12B—C12—H12C109.5
C8'—C7—C6130.7 (10)
C5—N1—N2—C30.8 (3)C3—C6—C7—S2'−122.1 (4)
N1—N2—C3—N4−0.4 (3)C3—C6—C7—S254.9 (4)
N1—N2—C3—C6−178.8 (2)C9—S2'—C7—C8'3.9 (11)
N2—C3—N4—C5−0.1 (3)C9—S2'—C7—C8−58 (9)
C6—C3—N4—C5178.2 (2)C9—S2'—C7—C6−178.6 (3)
N2—C3—N4—C11−179.4 (2)C9—S2'—C7—S24.1 (5)
C6—C3—N4—C11−1.0 (4)C10—S2—C7—C8'−2(9)
N2—N1—C5—N4−0.9 (3)C10—S2—C7—C85.2 (10)
N2—N1—C5—S1178.5 (2)C10—S2—C7—C6179.8 (2)
C3—N4—C5—N10.6 (3)C10—S2—C7—S2'−2.9 (4)
C11—N4—C5—N1179.9 (2)C7—C8—C9—C108.5 (15)
C3—N4—C5—S1−178.8 (2)C7—C8—C9—S2'−145 (4)
C11—N4—C5—S10.5 (3)C7—S2'—C9—C10−4.2 (5)
N2—C3—C6—C7−117.9 (3)C7—S2'—C9—C825 (3)
N4—C3—C6—C763.9 (4)C8—C9—C10—C8'−5.0 (13)
C10—C8'—C7—C85(2)S2'—C9—C10—C8'2.8 (11)
C10—C8'—C7—C6179.6 (7)C8—C9—C10—S2−4.9 (9)
C10—C8'—C7—S2'−3.2 (19)S2'—C9—C10—S22.9 (6)
C10—C8'—C7—S2178 (11)C7—C8'—C10—C90.6 (19)
C9—C8—C7—C8'−7.5 (18)C7—C8'—C10—S2−179 (6)
C9—C8—C7—C6177.2 (6)C7—S2—C10—C90.2 (4)
C9—C8—C7—S2'113 (9)C7—S2—C10—C8'1(4)
C9—C8—C7—S2−8.4 (15)C5—N4—C11—C1283.3 (3)
C3—C6—C7—C8'54.7 (14)C3—N4—C11—C12−97.5 (3)
C3—C6—C7—C8−131.4 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.443.287 (3)169
C6—H6a···S1ii0.972.993.949 (4)172
C9—H9···S1iii0.932.973.659 (4)132
C8'—H8'···S2iv0.933.023.928 (7)166

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x+1, y, z; (iii) x+1, −y+3/2, z+1/2; (iv) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2696).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Al-Soud, Y. A., Al-Dweri, M. N. & Al-Masoudi, N. A. (2004). Farmaco, 59, 775–783. [PubMed]
  • Amir, M. & Shikha, K. (2004). Eur. J. Med. Chem 39, 535–545. [PubMed]
  • Collin, X., Sauleau, A. & Coulon, J. (2003). Bioorg. Med. Chem. Lett.13, 2601–2605. [PubMed]
  • Demirayak, S., Benkli, K. & Güven, K. (2000). Eur. J. Med. Chem.35, 1037–1040. [PubMed]
  • Dobosz, M., Sruga, M., Chodkowska, A., Jagiello-Wojtowicz, E., Stepniak, K. & Koziol, A. E. (2002). Acta Pol. Pharm.59, 281–290. [PubMed]
  • Jian, F.-F., Bai, Z.-S., Li, K. & Xiao, H.-L. (2005). Acta Cryst. E61, o393–o395.
  • Maliszewska-Guz, A., Wujec, M., Pitucha, M., Dobosz, M., Chodkowska, A., Jagiello-Wojtowicz, E., Mazur, L. & Koziol, A. E. (2005). Collect. Czech. Chem. Commun.70, 51–62.
  • Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  • Palaska, E., Sahin, G., Kelicen, P., Durlu, T. N. & Altinok, G. (2002). Farmaco, 57, 101–107. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shivarama, H. B., Sooryanarayana, R. B., Sarojini, B. K., Akberali, P. M. & Suchetha, K. N. (2006). Eur. J. Med. Chem.41, 657–663. [PubMed]
  • Ünver, Y., Ustabaş, R., Çoruh, U., Sancak, K. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o3938–o3939.
  • Wujec, M., Kosikowska, U., Paneth, P. & Malm, A. (2007). Heterocycles, 71, 2617–2626.
  • Wujec, M., Pitucha, M., Dobosz, M., Kosikowska, U. & Malm, A. (2004). Acta Pharm.54, 251–260. [PubMed]
  • Yilmaz, V. T., Kazak, C., Ağar, E., Kahveci, B. & Guven, K. (2005). Acta Cryst. C61, o101–o104. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography