PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o343.
Published online 2009 January 17. doi:  10.1107/S1600536809001469
PMCID: PMC2968374

2-Benzoyl-1,1-diethyl-3-phenyl­guanidine

Abstract

In the title tetrasubstituted guanidine, C18H21N3O, the guanidine and carbonyl groups are not coplanar, as reflected by the torsion angles involving the N=C atoms [17.6 (3), −141.68 (17) and 42.2 (3)°]. This is probably due to the absence of an intra­molecular N—H(...)O hydrogen bond, forming a six-membered ring, and is commonly observed in this class of compounds. In the crystal structure, centrosymmetric dimers are formed via pairs of inter­molecular N—H(...)O hydrogen bonds. The dihedral angles between the guanidine plane and the phenyl ring and benzoyl plane are38.06 (9) and 41.54 (7)°, respectively.

Related literature

For thio­urea derivatives with biological activity, see: Berlinck (2002 [triangle]); Heys et al. (2000 [triangle]); Laeckmann et al. (2002 [triangle]); Kelley et al. (2001 [triangle]); Moroni et al. (2001 [triangle]); Ishikawa et al. (2002 [triangle]). For related structures, see: Murtaza et al. (2007 [triangle], 2008 [triangle]); Cunha et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o343-scheme1.jpg

Experimental

Crystal data

  • C18H21N3O
  • M r = 295.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o343-efi1.jpg
  • a = 10.472 (6) Å
  • b = 15.010 (8) Å
  • c = 10.154 (6) Å
  • β = 102.992 (6)°
  • V = 1555.2 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 113 (2) K
  • 0.50 × 0.40 × 0.30 mm

Data collection

  • Rigaku/MSC Mercury CCD diffractometer
  • Absorption correction: none
  • 12318 measured reflections
  • 3556 independent reflections
  • 3239 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.112
  • S = 1.27
  • 3556 reflections
  • 205 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001 [triangle]); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97 and TEXSAN.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001469/su2090sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001469/su2090Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MKR is grateful to the HEC-Pakistan for financial support for the Ph D program under scholarship No. [ILC–0363104].

supplementary crystallographic information

Comment

Guanidines are important compounds that have many biological, chemical and medicinal applications (Berlinck et al., 2002; Heys et al., 2000). They have received increasing interest as medicinal agents with antitumour, anti-hypertensive, anti-glaucoma and cardiotonic activities (Laeckmann et al., 2002; Kelley et al., 2001; Moroni et al., 2001). Due to their strongly basic character, they can be considered as super-bases that readily undergo protonation to generate resonance-stabilized guanidinium cations (Ishikawa et al., 2002).

The molecular structure of the title compound, (I), is illustrated in Fig. 1. It is a typical N',N,N,N''-Tetrasubstituted guanidine with normal geometrical parameters (Murtaza et al., 2007, 2008; Cunha et al., 2005). The carbonyl bond (C2═O1) shows the expected full double bond character, while the shorter values for bonds C2—N1, N1-C1, C1—N2, and C1—N3 indicate partial double bond character. The dihedral angles between the guanidine mean plane (C1/N1/N2/N3), and the phenyl ring (C13–C18), the benzoyl ring (C3-C8,C2,O1) and the N2/C9/C11 plane, are 38.06 (9)°, 41.54 (7)°, and 11.97 (13)°, respectively. The guanidine moiety and the carbonyl group are not co-planar, as reflected by the torsion angles C1—N1—C2—O1 = 17.6 (3)°, N2—C1—N1—C2 = -141.68 (17)°, and N3—C1—N1—C2 = 42.2 (3)°. This is probably due to the absence of an intramolecular N—H···O hydrogen bond, forming a six-membered ring, and commonly observed in this class of compounds (Cunha et al., 2005).

The crystal packing shows intermolecular N—H···O hydrogen bonds which result in the formation of centrosymmetric dimers (Fig. 2).

Experimental

N-Benzoyl-N'-phenylthiourea (0.512 g, 2 mmol), triethyl amine (0.56 ml, 4 mmol) and diethyl amine (0.11 mL, 2 mmol) dissolved in 20 ml dimethylformamide, were mixed with vigourous stirring at 5°C. Mercuric chloride (0.544 g, 2 mmol) was then added and the mixture vigorously stirred for 12 h. The progress of the reaction was monitored by TLC. When all the thiourea had been consumed, 20 mL of chloroform were added and the suspension was filtered through a cintered glass funnel to remove any residue (HgS) formed as a byproduct during the reaction. The solvent was evaporated under reduced pressure and the residue was dissolved in 20 mL of CH2Cl2. Other byproducts were extracted out with water (4× 30 mL). The organic phase was dried over anhydrous MgSO4 and then filtered. After filtration the solvent was evaporated and compound (I) was recrystallized in ethanol. Full spectroscopic and physical characterization will be reported elsewhere.

Refinement

The N-H hydrogen atom was located in a difference Fourier map and freely refined: N-H = 0.90 (2) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 - 0.98 Å with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.
Molecular structure of compound (I), showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A view of the centrosymmetric hydrogen-bonded dimer structure of compound (I) [Hydrogen bonds shown as dashed lines; symmetry code: (i) -x, 1 - y, 1 - z].

Crystal data

C18H21N3OF(000) = 632
Mr = 295.38Dx = 1.262 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 4060 reflections
a = 10.472 (6) Åθ = 6.3–55.0°
b = 15.010 (8) ŵ = 0.08 mm1
c = 10.154 (6) ÅT = 113 K
β = 102.992 (6)°Block, colourless
V = 1555.2 (15) Å30.50 × 0.40 × 0.30 mm
Z = 4

Data collection

Rigaku/MSC Mercury CCD diffractometer3239 reflections with I > 2σ(I)
graphiteRint = 0.042
Detector resolution: 14.62 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = −13→8
12318 measured reflectionsk = −19→19
3556 independent reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.27w = 1/[σ2(Fo2) + (0.0155P)2 + 1.0509P] where P = (Fo2 + 2Fc2)/3
3556 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.21836 (16)0.49684 (12)0.59825 (17)0.0158 (3)
N10.28409 (14)0.54983 (10)0.53093 (14)0.0174 (3)
N20.24622 (14)0.50194 (10)0.73344 (14)0.0172 (3)
N30.12913 (15)0.43370 (10)0.53944 (14)0.0171 (3)
H30.063 (2)0.4210 (15)0.580 (2)0.035 (6)*
C20.22449 (17)0.58833 (11)0.41264 (16)0.0162 (3)
O10.10437 (12)0.59798 (9)0.36752 (12)0.0208 (3)
C30.31721 (17)0.62748 (11)0.33424 (17)0.0168 (4)
C40.45097 (18)0.63592 (12)0.39163 (18)0.0201 (4)
H40.48540.61460.48060.024*
C50.53391 (19)0.67529 (13)0.31946 (19)0.0248 (4)
H50.62470.68100.35930.030*
C60.4846 (2)0.70640 (13)0.18924 (19)0.0249 (4)
H60.54140.73370.14020.030*
C70.35200 (19)0.69752 (12)0.13084 (18)0.0228 (4)
H70.31820.71840.04140.027*
C80.26838 (18)0.65820 (12)0.20278 (17)0.0195 (4)
H80.17770.65220.16230.023*
C90.32896 (18)0.57493 (13)0.80129 (18)0.0222 (4)
H9A0.30650.58710.88920.027*
H9B0.30970.62940.74550.027*
C100.47450 (19)0.55474 (14)0.82538 (19)0.0286 (4)
H10A0.49280.49740.87180.043*
H10B0.52430.60180.88140.043*
H10C0.50030.55210.73850.043*
C110.20739 (18)0.43504 (12)0.82325 (17)0.0202 (4)
H11A0.28580.41690.89220.024*
H11B0.17340.38160.76940.024*
C120.10328 (19)0.46898 (14)0.89432 (19)0.0262 (4)
H12A0.13800.51990.95180.039*
H12B0.07930.42130.95020.039*
H12C0.02560.48760.82670.039*
C130.12031 (17)0.39230 (11)0.41262 (16)0.0156 (3)
C140.22270 (18)0.39048 (12)0.34509 (17)0.0195 (4)
H140.30260.42050.38210.023*
C150.20751 (19)0.34464 (12)0.22372 (18)0.0225 (4)
H150.27710.34440.17770.027*
C160.09264 (19)0.29929 (12)0.16861 (18)0.0240 (4)
H160.08340.26800.08570.029*
C17−0.00860 (19)0.30017 (12)0.23605 (18)0.0227 (4)
H17−0.08760.26910.19930.027*
C180.00458 (17)0.34619 (12)0.35696 (17)0.0190 (4)
H18−0.06550.34640.40230.023*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0136 (8)0.0170 (8)0.0167 (8)0.0015 (7)0.0033 (6)0.0001 (6)
N10.0168 (7)0.0203 (8)0.0156 (7)−0.0023 (6)0.0049 (5)0.0008 (6)
N20.0190 (7)0.0188 (7)0.0145 (7)−0.0030 (6)0.0049 (6)0.0001 (6)
N30.0158 (7)0.0209 (8)0.0153 (7)−0.0029 (6)0.0053 (6)0.0002 (6)
C20.0181 (9)0.0161 (8)0.0156 (8)−0.0008 (7)0.0062 (7)−0.0028 (6)
O10.0167 (6)0.0247 (7)0.0217 (6)0.0005 (5)0.0058 (5)0.0048 (5)
C30.0200 (9)0.0151 (8)0.0175 (8)0.0000 (7)0.0086 (7)−0.0019 (6)
C40.0210 (9)0.0198 (9)0.0201 (9)−0.0001 (7)0.0059 (7)0.0017 (7)
C50.0213 (9)0.0243 (10)0.0308 (10)−0.0031 (8)0.0098 (8)0.0006 (8)
C60.0304 (10)0.0207 (9)0.0291 (10)−0.0032 (8)0.0180 (8)0.0001 (8)
C70.0332 (11)0.0197 (9)0.0177 (8)0.0006 (8)0.0101 (8)0.0015 (7)
C80.0221 (9)0.0189 (9)0.0181 (8)0.0001 (7)0.0060 (7)−0.0009 (7)
C90.0272 (10)0.0227 (9)0.0168 (8)−0.0064 (8)0.0053 (7)−0.0036 (7)
C100.0258 (10)0.0346 (11)0.0234 (9)−0.0083 (9)0.0011 (8)−0.0010 (8)
C110.0228 (9)0.0232 (9)0.0146 (8)−0.0021 (7)0.0041 (7)0.0041 (7)
C120.0269 (10)0.0337 (11)0.0205 (9)−0.0046 (8)0.0105 (8)0.0014 (8)
C130.0176 (8)0.0139 (8)0.0145 (8)0.0016 (7)0.0022 (6)0.0020 (6)
C140.0167 (9)0.0217 (9)0.0202 (9)−0.0014 (7)0.0044 (7)−0.0008 (7)
C150.0231 (9)0.0224 (9)0.0242 (9)0.0018 (7)0.0102 (7)−0.0009 (7)
C160.0339 (11)0.0197 (9)0.0183 (9)−0.0010 (8)0.0056 (8)−0.0035 (7)
C170.0248 (10)0.0193 (9)0.0225 (9)−0.0042 (7)0.0023 (7)−0.0011 (7)
C180.0172 (9)0.0200 (9)0.0201 (8)−0.0007 (7)0.0049 (7)0.0022 (7)

Geometric parameters (Å, °)

C1—N11.336 (2)C9—H9A0.9900
C1—N21.340 (2)C9—H9B0.9900
C1—N31.370 (2)C10—H10A0.9800
N1—C21.352 (2)C10—H10B0.9800
N2—C91.469 (2)C10—H10C0.9800
N2—C111.474 (2)C11—C121.524 (3)
N3—C131.414 (2)C11—H11A0.9900
N3—H30.90 (2)C11—H11B0.9900
C2—O11.247 (2)C12—H12A0.9800
C2—C31.506 (2)C12—H12B0.9800
C3—C81.396 (2)C12—H12C0.9800
C3—C41.397 (3)C13—C141.397 (3)
C4—C51.388 (3)C13—C181.400 (2)
C4—H40.9500C14—C151.389 (3)
C5—C61.388 (3)C14—H140.9500
C5—H50.9500C15—C161.386 (3)
C6—C71.388 (3)C15—H150.9500
C6—H60.9500C16—C171.385 (3)
C7—C81.392 (3)C16—H160.9500
C7—H70.9500C17—C181.388 (3)
C8—H80.9500C17—H170.9500
C9—C101.519 (3)C18—H180.9500
N1—C1—N2118.14 (15)C9—C10—H10A109.5
N1—C1—N3124.62 (15)C9—C10—H10B109.5
N2—C1—N3117.14 (15)H10A—C10—H10B109.5
C1—N1—C2121.38 (15)C9—C10—H10C109.5
C1—N2—C9119.52 (14)H10A—C10—H10C109.5
C1—N2—C11124.62 (15)H10B—C10—H10C109.5
C9—N2—C11115.71 (14)N2—C11—C12113.04 (15)
C1—N3—C13126.83 (15)N2—C11—H11A109.0
C1—N3—H3117.8 (15)C12—C11—H11A109.0
C13—N3—H3114.9 (14)N2—C11—H11B109.0
O1—C2—N1127.02 (16)C12—C11—H11B109.0
O1—C2—C3118.52 (16)H11A—C11—H11B107.8
N1—C2—C3114.36 (15)C11—C12—H12A109.5
C8—C3—C4119.10 (16)C11—C12—H12B109.5
C8—C3—C2119.54 (16)H12A—C12—H12B109.5
C4—C3—C2121.33 (16)C11—C12—H12C109.5
C5—C4—C3120.41 (17)H12A—C12—H12C109.5
C5—C4—H4119.8H12B—C12—H12C109.5
C3—C4—H4119.8C14—C13—C18118.86 (16)
C6—C5—C4120.22 (18)C14—C13—N3123.74 (16)
C6—C5—H5119.9C18—C13—N3117.28 (16)
C4—C5—H5119.9C15—C14—C13119.85 (17)
C5—C6—C7119.79 (17)C15—C14—H14120.1
C5—C6—H6120.1C13—C14—H14120.1
C7—C6—H6120.1C16—C15—C14121.16 (18)
C6—C7—C8120.23 (17)C16—C15—H15119.4
C6—C7—H7119.9C14—C15—H15119.4
C8—C7—H7119.9C17—C16—C15119.13 (17)
C7—C8—C3120.24 (17)C17—C16—H16120.4
C7—C8—H8119.9C15—C16—H16120.4
C3—C8—H8119.9C16—C17—C18120.46 (17)
N2—C9—C10113.05 (16)C16—C17—H17119.8
N2—C9—H9A109.0C18—C17—H17119.8
C10—C9—H9A109.0C17—C18—C13120.53 (17)
N2—C9—H9B109.0C17—C18—H18119.7
C10—C9—H9B109.0C13—C18—H18119.7
H9A—C9—H9B107.8
N2—C1—N1—C2−141.68 (17)C5—C6—C7—C80.5 (3)
N3—C1—N1—C242.2 (3)C6—C7—C8—C30.1 (3)
N1—C1—N2—C910.7 (2)C4—C3—C8—C7−0.7 (3)
N3—C1—N2—C9−172.82 (15)C2—C3—C8—C7177.63 (16)
N1—C1—N2—C11−164.64 (16)C1—N2—C9—C10−85.7 (2)
N3—C1—N2—C1111.8 (2)C11—N2—C9—C1090.06 (19)
N1—C1—N3—C1322.4 (3)C1—N2—C11—C12−110.70 (19)
N2—C1—N3—C13−153.84 (16)C9—N2—C11—C1273.8 (2)
C1—N1—C2—O117.6 (3)C1—N3—C13—C1419.1 (3)
C1—N1—C2—C3−166.17 (15)C1—N3—C13—C18−164.97 (16)
O1—C2—C3—C8−12.0 (2)C18—C13—C14—C151.1 (3)
N1—C2—C3—C8171.40 (16)N3—C13—C14—C15176.97 (16)
O1—C2—C3—C4166.25 (16)C13—C14—C15—C16−0.9 (3)
N1—C2—C3—C4−10.3 (2)C14—C15—C16—C170.2 (3)
C8—C3—C4—C50.8 (3)C15—C16—C17—C180.3 (3)
C2—C3—C4—C5−177.53 (16)C16—C17—C18—C13−0.1 (3)
C3—C4—C5—C6−0.2 (3)C14—C13—C18—C17−0.6 (3)
C4—C5—C6—C7−0.4 (3)N3—C13—C18—C17−176.78 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.90 (2)1.97 (2)2.852 (2)168 (2)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2090).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Berlinck, R. G. S. (2002). Nat. Prod. Rep.19, 617–649. [PubMed]
  • Cunha, S., Rodrigues, M. T. Jr, da Silva, C. C., Napolitano, H. B., Vencato, I. & Lariucci, C. (2005). Tetrahedron, 61, 10536–10540.
  • Heys, L., Moore, C. G. & Murphy, P. J. (2000). Chem. Soc. Rev.29, 57–67.
  • Ishikawa, T. & Isobe, T. (2002). Chem. Eur. J.8, 552–557. [PubMed]
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Kelley, M. T., Burckstummer, T., Wenzel-Seifert, K., Dove, S., Buschauer, A. & Seifert, R. (2001). Mol. Pharm.60, 1210–1225. [PubMed]
  • Laeckmann, D., Rogister, F., Dejardin, J.-V., Prosperi-Meys, C., Geczy, J., Delarge, J. & Masereel, B. (2002). Bioorg. Med. Chem.10, 1793–1804. [PubMed]
  • Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Molecular Structure Corporation & Rigaku (2004). TEXSAN MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Moroni, M., Koksch, B., Osipov, S. N., Crucianelli, M., Frigerio, M., Bravo, P. & Burger, K. (2001). J. Org. Chem.66, 130–133. [PubMed]
  • Murtaza, G., Said, M., Rauf, M. K., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o4664.
  • Murtaza, G., Said, M., Khawar Rauf, M., Masahiro, E. & Badshah, A. (2008). Acta Cryst. E64, o333. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography