PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o322.
Published online 2009 January 17. doi:  10.1107/S1600536809000415
PMCID: PMC2968369

Benzyl­tributyl­ammonium 4,6-dihydroxy­naphthalene-2-sulfonate

Abstract

The title mol­ecular salt, C19H34N+·C10H7O5S, is a charge-control agent used for toners in electrophotography with a high melting point of 508 K. In the crystal structure, the anions form inversion dimers, linked by pairs of O—H(...)O hydrogen bonds. Further O—H(...)O links between dimers generate anionic sheets propagating in (010). One of the n-butyl chains of the cation is disordered over two sets of sites in a 0.53:0.47 ratio.

Related literature

For background on charge-control agents, see: Nash et al. (2001 [triangle]) and Uta et al. (2009 [triangle]). For the structures of benzyl­tributyl­ammonium 4-hydroxy­naphthalene-1-sulfonate, benzyl­tributyl­ammonium 6-hydroxy­naphthalene-2-sulfonate, benzyl­tributyl­ammonium 4-hydroxy­naphthalene-2-sulfonate and benzyl­tributyl­ammonium 7-hydroxy­naphthalene-1-sulfonate, see: Mizuguchi et al. (2007 [triangle]), Uta et al. (2009 [triangle]), Uta & Mizuguchi (2009 [triangle]) and Sato et al. (2009 [triangle]), respectively.

An external file that holds a picture, illustration, etc.
Object name is e-65-0o322-scheme1.jpg

Experimental

Crystal data

  • C19H34N+·C10H7O5S
  • M r = 515.70
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o322-efi1.jpg
  • a = 18.6976 (3) Å
  • b = 15.3045 (2) Å
  • c = 19.7287 (3) Å
  • V = 5645.51 (14) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 1.32 mm−1
  • T = 296.1 K
  • 0.50 × 0.45 × 0.40 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.425, T max = 0.517 (expected range = 0.485–0.590)
  • 49979 measured reflections
  • 5149 independent reflections
  • 2937 reflections with F 2 > 2σ(F 2)
  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.196
  • wR(F 2) = 0.547
  • S = 1.49
  • 5149 reflections
  • 332 parameters
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −1.55 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2006 [triangle]); program(s) used to solve structure: SIR2004 (Burla et al., 2003 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: CrystalStructure.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000415/hb2891sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000415/hb2891Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors express their sincere thanks to Mr O. Yamate at Orient Chemical Industries, Ltd for the sample preparation.

supplementary crystallographic information

Comment

Compound (I) is a charge-control-agent used for toners in electrophotography. The background of the present study has been set out in our previous paper (Uta et al., 2009). We have previously investigated the crystal structure of the following four isomers in connection with the mechanism of their high melting points: benzyltributylammonium 4-hydroxynaphthalene-1-sulfonate (Mizuguchi et al., 2007), benzyltributylammonium 6-hydroxynaphthalene-2-sulfonate (Uta et al., 2009, benzyltributylammonium 4-hydroxynaphthalene-2-sulfonate (Uta & Mizuguchi, 2009), and benzyltributylammonium 7-hydroxynaphthalene-1-sulfonate (Sato et al., 2009). The melting points of these isomers are 462, 433, 451 and 439 K, respectively. Except for benzyltributylammonium 4-hydroxynaphthalene-2-sulfonate, the anions in the ammonium sulfates form chains of O—H···O intermolecular hydrogen bonds between the –OH group of one anion and the sulfonic O atom of the neighboring one. The present hydrogen-bond network is found to be responsible for the high thermal stability of these compounds. On the other hand, benzyltributylammonium 4-hydroxynaphthalene-2-sulfonate which forms a two-dimensional hydrogen-bond network (Uta & Mizuguchi, 2009). The present paper deals with the structure of the title compound, (I), which includes two hydroxy groups in the naphthalene sulfonate (Fig. 1).

The ions in (I) have no crystallographically imposed symmetry. Fig. 2 shows a pseudo-dimer unit connected by O—H···O intermolecular hydrogen-bonded between the OH group of one anion and the sulfonic O atom of the neighboring one. Then, the dimer units consitute a two-dimensional hydrogen-bond network as shown in Fig. 3. There are four hydrogen bonds per molecule in the network, which contibutes to the high thermal stability of compound (I) as characterized by a melting point of 478 K.

Experimental

The title compound was obtained from Orient Chemical Industries Ltd., and was recrystallized from an methanol solution. After 48 h, a number of colourless crystals were obtained in the form of blocks of (I).

Refinement

C18 and C19 were found to be disordered over two sites each. The site occupancies for C18A/C18B and C19A/C19B are 0.53/0.47. These atoms were refined anisotropically. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (aromatic), 0.96 Å (methyl), or 0.97 Å (methylene), and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(parent atom). The deepest hole is located 0.79Å from atom S1. The high R value of the present analysis can presumably be attributed to the poor crystallinity of the sample, although its size is sufficient.

Figures

Fig. 1.
The asymmetric unit of (I), showing 30% probability displacement ellipsoids for the non-hydrogen atoms and only the major disorder component of the cation.
Fig. 2.
Inversion dimer unit connected by two O—H···O intermoleclar hydrogen bonds.
Fig. 3.
The two-dimensional hydrogen-bond network in the (010) plane.

Crystal data

C19H34N+·C10H7O5SF(000) = 2224.00
Mr = 515.70Dx = 1.214 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ac 2abCell parameters from 29523 reflections
a = 18.6976 (3) Åθ = 3.3–68.2°
b = 15.3045 (2) ŵ = 1.32 mm1
c = 19.7287 (3) ÅT = 296 K
V = 5645.51 (14) Å3Block, colourless
Z = 80.50 × 0.45 × 0.40 mm

Data collection

Rigaku R-AXIS RAPID diffractometer2937 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.070
ω scansθmax = 68.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −22→22
Tmin = 0.425, Tmax = 0.517k = −18→18
49979 measured reflectionsl = −23→23
5149 independent reflections

Refinement

Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.196w = 1/[σ2(Fo2) + (0.3P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.547(Δ/σ)max < 0.001
S = 1.49Δρmax = 0.46 e Å3
5149 reflectionsΔρmin = −1.55 e Å3
332 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.57640 (9)−0.08254 (12)0.11259 (8)0.0863 (7)
O10.5860 (2)−0.1387 (3)0.0538 (2)0.1069 (16)
O20.6038 (2)0.0070 (3)0.1008 (2)0.0958 (13)
O30.6031 (2)−0.1202 (3)0.1753 (2)0.0985 (14)
O40.3225 (2)−0.0388 (3)0.0178 (2)0.1020 (14)
O50.1550 (2)−0.0580 (3)0.2110 (2)0.1031 (14)
N10.4640 (2)0.2386 (3)0.1198 (2)0.0886 (15)
C10.6461 (4)0.2299 (6)0.1023 (4)0.120 (2)
C20.7111 (5)0.2710 (8)0.0881 (6)0.141 (3)
C30.7168 (7)0.3210 (8)0.0321 (7)0.161 (4)
C40.6604 (6)0.3332 (8)−0.0113 (7)0.157 (3)
C50.5955 (5)0.2916 (7)0.0026 (5)0.134 (3)
C60.5872 (3)0.2396 (5)0.0600 (4)0.098 (2)
C70.5181 (3)0.1910 (5)0.0727 (3)0.098 (2)
C80.4935 (4)0.2484 (5)0.1924 (3)0.100 (2)
C90.5092 (5)0.1646 (6)0.2294 (3)0.121 (2)
C100.5168 (6)0.1769 (6)0.3031 (4)0.134 (3)
C110.5276 (6)0.0902 (6)0.3404 (5)0.144 (3)
C120.4475 (4)0.3312 (4)0.0937 (3)0.0960 (19)
C130.4049 (4)0.3341 (4)0.0280 (4)0.105 (2)
C140.4016 (5)0.4253 (5)0.0017 (4)0.117 (2)
C150.3534 (6)0.4327 (7)−0.0593 (5)0.146 (3)
C160.3975 (3)0.1816 (5)0.1193 (4)0.102 (2)
C170.3383 (4)0.2173 (5)0.1649 (5)0.136 (3)
C18A0.2950 (11)0.1572 (10)0.1998 (15)0.136 (3)0.53
C18B0.2741 (8)0.1655 (15)0.1599 (12)0.123 (6)0.47
C19A0.2290 (14)0.2034 (18)0.230 (2)0.190 (7)0.53
C19B0.2168 (17)0.163 (2)0.217 (2)0.190 (7)0.47
C200.4837 (3)−0.0710 (4)0.1227 (3)0.0823 (17)
C210.4407 (3)−0.0583 (4)0.0648 (3)0.0859 (16)
C220.3669 (3)−0.0524 (4)0.0723 (3)0.0809 (15)
C230.3341 (3)−0.0600 (3)0.1368 (2)0.0770 (14)
C240.2586 (3)−0.0569 (4)0.1444 (3)0.0860 (17)
C250.2293 (3)−0.0607 (4)0.2068 (3)0.0840 (16)
C260.2706 (4)−0.0672 (4)0.2650 (3)0.0964 (19)
C270.3450 (3)−0.0732 (4)0.2580 (3)0.0898 (18)
C280.3771 (3)−0.0692 (4)0.1947 (2)0.0793 (15)
C290.4536 (3)−0.0750 (4)0.1870 (3)0.0824 (16)
H10.64210.19540.14090.144*
H20.75000.26390.11700.169*
H30.76030.34800.02270.193*
H40.66530.3686−0.04940.188*
H4O0.3466−0.0336−0.01670.122*
H50.55720.2987−0.02700.161*
H5O0.1428−0.06170.25080.124*
H7A0.52940.13470.09250.118*
H7B0.49520.18020.02940.118*
H8A0.53720.28240.19030.119*
H8B0.45920.28160.21880.119*
H9A0.47090.12340.22080.145*
H9B0.55310.13970.21160.145*
H10A0.47420.20540.32050.160*
H10B0.55730.21480.31190.160*
H11A0.49810.04610.32020.217*
H11B0.51470.09720.38720.217*
H11C0.57690.07310.33730.217*
H12A0.42100.36240.12840.115*
H12B0.49230.36190.08680.115*
H13A0.42740.2966−0.00550.126*
H13B0.35690.31250.03600.126*
H14A0.44930.4444−0.01050.140*
H14B0.38410.46360.03720.140*
H15A0.36890.3924−0.09350.218*
H15B0.35540.4912−0.07680.218*
H15C0.30510.4192−0.04630.218*
H16A0.41010.12330.13430.123*
H16B0.37960.17730.07330.123*
H17A0.36030.25530.19830.163*0.53
H17B0.30730.25340.13720.163*0.53
H17C0.35470.21750.21160.163*0.47
H17D0.32770.27710.15210.163*0.47
H18A0.32240.13020.23590.163*0.53
H18B0.27960.11160.16900.163*0.53
H18C0.28910.10560.15250.148*0.47
H18D0.24970.18390.11890.148*0.47
H19A0.24110.22770.27330.284*0.53
H19B0.19090.16200.23520.284*0.53
H19C0.21400.24940.20000.284*0.53
H19D0.21800.21740.24190.284*0.47
H19E0.22690.11580.24760.284*0.47
H19F0.17020.15540.19770.284*0.47
H210.4614−0.05380.02210.103*
H240.2294−0.05230.10650.103*
H260.2494−0.06750.30760.116*
H270.3732−0.08000.29640.108*
H290.4826−0.08150.22490.099*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0805 (10)0.1074 (13)0.0711 (11)0.0042 (7)−0.0076 (6)−0.0044 (7)
O10.091 (2)0.143 (4)0.087 (2)0.019 (2)−0.004 (2)−0.046 (2)
O20.091 (2)0.104 (3)0.092 (2)−0.019 (2)0.003 (2)0.011 (2)
O30.084 (2)0.134 (3)0.077 (2)0.004 (2)−0.015 (2)0.015 (2)
O40.090 (2)0.151 (4)0.065 (2)−0.001 (2)−0.004 (2)0.012 (2)
O50.076 (2)0.145 (3)0.088 (3)0.001 (2)0.008 (2)0.002 (2)
N10.089 (3)0.095 (3)0.082 (3)0.004 (2)0.003 (2)−0.010 (2)
C10.108 (5)0.152 (7)0.100 (5)−0.010 (5)−0.010 (4)−0.016 (4)
C20.105 (5)0.191 (10)0.127 (7)−0.024 (6)0.005 (5)−0.034 (7)
C30.130 (8)0.159 (9)0.195 (13)−0.013 (7)0.046 (9)−0.017 (9)
C40.126 (7)0.178 (9)0.165 (9)−0.004 (7)0.033 (7)0.033 (8)
C50.124 (6)0.173 (8)0.106 (6)0.012 (6)0.019 (5)0.017 (6)
C60.090 (4)0.110 (5)0.094 (4)0.007 (3)0.004 (3)−0.020 (3)
C70.084 (3)0.117 (5)0.093 (4)0.005 (3)0.010 (3)−0.021 (3)
C80.114 (5)0.107 (4)0.077 (4)0.004 (3)0.004 (3)−0.016 (3)
C90.150 (7)0.128 (6)0.085 (5)0.017 (5)−0.010 (4)−0.004 (4)
C100.176 (8)0.128 (6)0.097 (6)0.036 (6)−0.006 (5)−0.006 (4)
C110.155 (8)0.176 (9)0.102 (6)0.032 (6)0.013 (6)0.008 (5)
C120.096 (4)0.095 (4)0.097 (4)0.000 (3)0.001 (3)0.004 (3)
C130.110 (4)0.102 (4)0.104 (5)0.000 (4)−0.009 (4)0.013 (3)
C140.125 (6)0.117 (5)0.108 (5)0.002 (4)0.004 (5)0.013 (4)
C150.161 (9)0.136 (7)0.140 (8)0.023 (6)0.003 (7)0.018 (6)
C160.081 (3)0.108 (5)0.119 (6)−0.012 (3)0.011 (3)−0.012 (4)
C170.116 (5)0.117 (5)0.175 (8)−0.009 (4)0.052 (5)−0.006 (5)
C18A0.116 (5)0.117 (5)0.175 (8)−0.009 (4)0.052 (5)−0.006 (5)
C18B0.097 (10)0.158 (15)0.114 (13)−0.013 (9)−0.007 (8)−0.011 (11)
C19A0.150 (11)0.131 (17)0.288 (18)−0.026 (10)0.112 (12)−0.067 (15)
C19B0.150 (11)0.131 (17)0.288 (18)−0.026 (10)0.112 (12)−0.067 (15)
C200.092 (4)0.096 (3)0.059 (3)−0.003 (3)−0.007 (2)−0.001 (2)
C210.084 (3)0.101 (3)0.074 (3)0.004 (3)−0.008 (3)−0.003 (3)
C220.069 (3)0.104 (4)0.070 (3)−0.002 (3)−0.012 (2)−0.002 (2)
C230.085 (3)0.092 (3)0.054 (2)−0.006 (2)0.002 (2)0.003 (2)
C240.071 (3)0.113 (4)0.074 (3)0.002 (3)0.000 (2)0.004 (3)
C250.075 (3)0.098 (4)0.079 (3)−0.010 (3)0.001 (2)0.002 (3)
C260.105 (4)0.122 (5)0.062 (3)0.001 (3)0.005 (3)0.005 (3)
C270.082 (3)0.122 (5)0.065 (3)−0.007 (3)0.002 (2)0.000 (3)
C280.086 (3)0.096 (3)0.055 (2)0.009 (3)−0.001 (2)0.003 (2)
C290.075 (3)0.103 (4)0.069 (3)0.003 (2)−0.009 (2)0.001 (2)

Geometric parameters (Å, °)

S1—O11.455 (5)C4—H40.930
S1—O21.481 (5)C5—H50.930
S1—O31.453 (4)C7—H7A0.970
S1—C201.753 (7)C7—H7B0.970
O4—C221.375 (7)C8—H8A0.970
O5—C251.392 (7)C8—H8B0.970
N1—C71.555 (9)C9—H9A0.970
N1—C81.543 (8)C9—H9B0.970
N1—C121.540 (9)C10—H10A0.970
N1—C161.519 (9)C10—H10B0.970
C1—C21.398 (14)C11—H11A0.960
C1—C61.388 (11)C11—H11B0.960
C2—C31.348 (19)C11—H11C0.960
C3—C41.372 (19)C12—H12A0.970
C4—C51.399 (16)C12—H12B0.970
C5—C61.394 (13)C13—H13A0.970
C6—C71.511 (10)C13—H13B0.970
C8—C91.504 (11)C14—H14A0.970
C9—C101.473 (11)C14—H14B0.970
C10—C111.530 (13)C15—H15A0.960
C12—C131.522 (11)C15—H15B0.960
C13—C141.491 (10)C15—H15C0.960
C14—C151.507 (14)C16—H16A0.970
C16—C171.527 (12)C16—H16B0.970
C17—C18A1.40 (2)C17—H17A0.970
C17—C18B1.44 (2)C17—H17B0.970
C18A—C19A1.54 (3)C17—H17C0.970
C18B—C19B1.56 (4)C17—H17D0.970
C20—C211.411 (9)C18A—H18A0.970
C20—C291.389 (8)C18A—H18B0.970
C21—C221.389 (8)C18B—H18C0.970
C22—C231.416 (8)C18B—H18D0.970
C23—C241.421 (8)C19A—H19A0.960
C23—C281.405 (8)C19A—H19B0.960
C24—C251.347 (9)C19A—H19C0.960
C25—C261.387 (9)C19B—H19D0.960
C26—C271.401 (10)C19B—H19E0.960
C27—C281.387 (8)C19B—H19F0.960
C28—C291.440 (9)C21—H210.930
O4—H4O0.820C24—H240.930
O5—H5O0.820C26—H260.930
C1—H10.930C27—H270.930
C2—H20.930C29—H290.930
C3—H30.930
O2···O4i2.758 (6)O5···H12Avi2.482
O3···O5ii2.623 (6)O5···H17Avi2.883
O4···O2i2.758 (6)O5···H17Dvi2.797
O5···O3iii2.623 (6)C2···H19Aii2.869
S1···H4Oi2.967C4···H18Dvii2.713
S1···H5Oii2.984C7···H21i2.837
O1···H3iv2.946C10···H19Fii2.888
O1···H13Ai2.609C11···H19Fii2.944
O1···H7Bi2.323C21···H7Bi2.895
O1···H16Bi2.655C23···H18B2.888
O2···H4Oi1.943C23···H18C2.688
O2···H21i2.807C24···H18B2.653
O2···H7A2.403C24···H18C2.556
O3···H5Oii1.865C25···H17Dvi2.909
O3···H8Bv2.825C25···H18B2.897
O3···H26ii2.871C25···H18C2.979
O4···H15Cvi2.777C25···H19E2.820
O5···H11Ciii2.659C26···H19E2.937
O1—S1—O2112.3 (2)C9—C10—H10A109.2
O1—S1—O3113.7 (3)C9—C10—H10B109.2
O1—S1—C20105.8 (2)C11—C10—H10A109.2
O2—S1—O3112.4 (2)C11—C10—H10B109.2
O2—S1—C20105.4 (2)H10A—C10—H10B107.9
O3—S1—C20106.4 (2)C10—C11—H11A109.5
C7—N1—C8111.6 (5)C10—C11—H11B109.5
C7—N1—C12111.2 (5)C10—C11—H11C109.5
C7—N1—C16105.2 (5)H11A—C11—H11B109.5
C8—N1—C12107.0 (5)H11A—C11—H11C109.5
C8—N1—C16110.8 (5)H11B—C11—H11C109.5
C12—N1—C16111.3 (5)N1—C12—H12A108.6
C2—C1—C6121.4 (8)N1—C12—H12B108.6
C1—C2—C3119.3 (10)C13—C12—H12A108.6
C2—C3—C4121.9 (11)C13—C12—H12B108.6
C3—C4—C5118.9 (11)H12A—C12—H12B107.6
C4—C5—C6121.0 (9)C12—C13—H13A109.6
C1—C6—C5117.5 (7)C12—C13—H13B109.6
C1—C6—C7121.7 (7)C14—C13—H13A109.6
C5—C6—C7120.6 (7)C14—C13—H13B109.6
N1—C7—C6115.1 (6)H13A—C13—H13B108.1
N1—C8—C9115.9 (6)C13—C14—H14A109.2
C8—C9—C10112.9 (7)C13—C14—H14B109.2
C9—C10—C11112.2 (7)C15—C14—H14A109.2
N1—C12—C13114.5 (5)C15—C14—H14B109.2
C12—C13—C14110.2 (6)H14A—C14—H14B107.9
C13—C14—C15111.9 (7)C14—C15—H15A109.5
N1—C16—C17112.7 (6)C14—C15—H15B109.5
C16—C17—C18A118.2 (10)C14—C15—H15C109.5
C16—C17—C18B111.5 (11)H15A—C15—H15B109.5
C17—C18A—C19A110.4 (15)H15A—C15—H15C109.5
C17—C18B—C19B122 (2)H15B—C15—H15C109.5
S1—C20—C21119.1 (4)N1—C16—H16A109.1
S1—C20—C29120.1 (4)N1—C16—H16B109.1
C21—C20—C29120.8 (6)C17—C16—H16A109.1
C20—C21—C22119.3 (5)C17—C16—H16B109.1
O4—C22—C21121.7 (5)H16A—C16—H16B107.8
O4—C22—C23117.0 (5)C16—C17—H17A107.8
C21—C22—C23121.3 (5)C16—C17—H17B107.8
C22—C23—C24121.5 (5)C16—C17—H17C109.3
C22—C23—C28119.4 (5)C16—C17—H17D109.3
C24—C23—C28119.0 (5)C18A—C17—H17A107.8
C23—C24—C25120.0 (5)C18A—C17—H17B107.8
O5—C25—C24117.3 (5)C18B—C17—H17C109.3
O5—C25—C26120.5 (5)C18B—C17—H17D109.3
C24—C25—C26122.2 (6)H17A—C17—H17B107.1
C25—C26—C27118.4 (6)H17C—C17—H17D108.0
C26—C27—C28121.1 (6)C17—C18A—H18A109.6
C23—C28—C27119.2 (6)C17—C18A—H18B109.6
C23—C28—C29119.2 (5)C19A—C18A—H18A109.6
C27—C28—C29121.6 (5)C19A—C18A—H18B109.6
C20—C29—C28119.8 (5)H18A—C18A—H18B108.1
C22—O4—H4O109.5C17—C18B—H18C106.8
C25—O5—H5O109.5C17—C18B—H18D106.8
C2—C1—H1119.3C19B—C18B—H18C106.8
C6—C1—H1119.3C19B—C18B—H18D106.8
C1—C2—H2120.4H18C—C18B—H18D106.6
C3—C2—H2120.4C18A—C19A—H19A109.5
C2—C3—H3119.1C18A—C19A—H19B109.5
C4—C3—H3119.1C18A—C19A—H19C109.5
C3—C4—H4120.6H19A—C19A—H19B109.5
C5—C4—H4120.6H19A—C19A—H19C109.5
C4—C5—H5119.5H19B—C19A—H19C109.5
C6—C5—H5119.5C18B—C19B—H19D109.5
N1—C7—H7A108.5C18B—C19B—H19E109.5
N1—C7—H7B108.5C18B—C19B—H19F109.5
C6—C7—H7A108.5H19D—C19B—H19E109.5
C6—C7—H7B108.5H19D—C19B—H19F109.5
H7A—C7—H7B107.5H19E—C19B—H19F109.5
N1—C8—H8A108.3C20—C21—H21120.4
N1—C8—H8B108.3C22—C21—H21120.3
C9—C8—H8A108.3C23—C24—H24120.0
C9—C8—H8B108.3C25—C24—H24120.0
H8A—C8—H8B107.4C25—C26—H26120.8
C8—C9—H9A109.0C27—C26—H26120.8
C8—C9—H9B109.0C26—C27—H27119.5
C10—C9—H9A109.0C28—C27—H27119.5
C10—C9—H9B109.0C20—C29—H29120.1
H9A—C9—H9B107.8C28—C29—H29120.1
O1—S1—C20—C21−41.9 (6)C12—C13—C14—C15−173.9 (7)
O1—S1—C20—C29137.6 (5)N1—C16—C17—C18A−144.5 (14)
O2—S1—C20—C2177.2 (5)N1—C16—C17—C18B175.9 (11)
O2—S1—C20—C29−103.3 (5)C16—C17—C18A—C19A−167.5 (18)
O3—S1—C20—C21−163.2 (5)C16—C17—C18B—C19B156.7 (19)
O3—S1—C20—C2916.3 (6)S1—C20—C21—C22177.5 (5)
C7—N1—C8—C9−61.7 (8)S1—C20—C29—C28−177.4 (4)
C8—N1—C7—C6−64.9 (7)C21—C20—C29—C282.1 (9)
C7—N1—C12—C1368.9 (7)C29—C20—C21—C22−2.0 (10)
C12—N1—C7—C654.5 (7)C20—C21—C22—O4179.0 (6)
C7—N1—C16—C17178.5 (6)C20—C21—C22—C23−0.8 (10)
C16—N1—C7—C6175.0 (6)O4—C22—C23—C242.2 (9)
C8—N1—C12—C13−169.1 (6)O4—C22—C23—C28−176.5 (5)
C12—N1—C8—C9176.5 (6)C21—C22—C23—C24−177.9 (6)
C8—N1—C16—C1757.9 (8)C21—C22—C23—C283.3 (9)
C16—N1—C8—C955.1 (8)C22—C23—C24—C25−177.2 (6)
C12—N1—C16—C17−61.0 (8)C22—C23—C28—C27177.5 (6)
C16—N1—C12—C13−48.0 (8)C22—C23—C28—C29−3.1 (8)
C2—C1—C6—C50.2 (10)C24—C23—C28—C27−1.3 (9)
C2—C1—C6—C7176.1 (9)C24—C23—C28—C29178.1 (5)
C6—C1—C2—C3−0.0 (16)C28—C23—C24—C251.5 (9)
C1—C2—C3—C40.3 (15)C23—C24—C25—O5−179.6 (5)
C2—C3—C4—C5−0.9 (18)C23—C24—C25—C260.4 (8)
C3—C4—C5—C61.1 (17)O5—C25—C26—C27177.5 (6)
C4—C5—C6—C1−0.8 (14)C24—C25—C26—C27−2.5 (10)
C4—C5—C6—C7−176.7 (9)C25—C26—C27—C282.7 (10)
C1—C6—C7—N188.7 (9)C26—C27—C28—C23−0.8 (9)
C5—C6—C7—N1−95.5 (9)C26—C27—C28—C29179.8 (4)
N1—C8—C9—C10−163.2 (7)C23—C28—C29—C200.4 (7)
C8—C9—C10—C11176.1 (8)C27—C28—C29—C20179.8 (4)
N1—C12—C13—C14−171.3 (6)

Symmetry codes: (i) −x+1, −y, −z; (ii) x+1/2, y, −z+1/2; (iii) x−1/2, y, −z+1/2; (iv) −x+3/2, y−1/2, z; (v) −x+1, y−1/2, −z+1/2; (vi) −x+1/2, y−1/2, z; (vii) x+1/2, −y+1/2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4O···O2i0.821.942.758 (6)172
O5—H5O···O3iii0.821.872.623 (6)153

Symmetry codes: (i) −x+1, −y, −z; (iii) x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2891).

References

  • Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Mizuguchi, J., Sato, Y., Uta, K. & Sato, K. (2007). Acta Cryst. E63, o2509–o2510.
  • Nash, R. J., Grande, M. L. & Muller, R. N. (2001). Proceedings of the 7th International Conference on Advances in Non-Impact Printing Technology, pp. 358–364.
  • Rigaku (2006). PROCESS-AUTO and CrystalStructure Rigaku Corporation, Tokyo, Japan.
  • Sato, Y., Uta, K. & Mizuguchi, J. (2009). Acta Cryst E65, o321. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Uta, K. & Mizuguchi, J. (2009). Acta Cryst E65, o320. [PMC free article] [PubMed]
  • Uta, K., Sato, Y. & Mizuguchi, J. (2009). Acta Cryst. E65, o319. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography